%global _empty_manifest_terminate_build 0 Name: python-scimap Version: 1.1.0 Release: 1 Summary: Spatial Single-Cell Analysis Toolkit License: MIT URL: https://pypi.org/project/scimap/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/dc/df/9fbc541d80ff9ced659aa755c8bc0107a29bb1e4d20f97928b3691bc64aa/scimap-1.1.0.tar.gz BuildArch: noarch Requires: python3-pytest Requires: python3-anndata Requires: python3-pandas Requires: python3-scipy Requires: python3-seaborn Requires: python3-tifffile Requires: python3-numpy Requires: python3-pytest-xvfb Requires: python3-matplotlib Requires: python3-PhenoGraph Requires: python3-scanpy Requires: python3-mkdocs Requires: python3-plotly Requires: python3-TiffFile Requires: python3-dask[array] Requires: python3-zarr Requires: python3-napari Requires: python3-numba Requires: python3-shapely Requires: python3-gensim Requires: python3-mkdocs-material Requires: python3-napari-ome-zarr Requires: python3-llvmlite Requires: python3-combat %description # Single-Cell Image Analysis Package
[![build: Unix-Mac-Win](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml) [![Docs](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml) [![Downloads](https://pepy.tech/badge/scimap)](https://pepy.tech/project/scimap) [![PyPI Version](https://img.shields.io/pypi/v/scimap.svg)](https://pypi.org/project/scimap) [![PyPI License](https://img.shields.io/pypi/l/scimap.svg)](https://pypi.org/project/scimap) [![Gitter chat](https://badges.gitter.im/scimap_io/community.png)](https://gitter.im/scimap_io/community) [![DOI](https://zenodo.org/badge/271099296.svg)](https://zenodo.org/badge/latestdoi/271099296)

Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spatial datasets mapped to XY coordinates. The package uses the [anndata](https://anndata.readthedocs.io/en/stable/anndata.AnnData.html) framework making it easy to integrate with other popular single-cell analysis toolkits. It includes preprocessing, phenotyping, visualization, clustering, spatial analysis and differential spatial testing. The Python-based implementation efficiently deals with large datasets of millions of cells. ## Installation We strongly recommend installing `scimap` in a fresh virtual environment. ``` # If you have conda installed conda create --name scimap python=3.8 conda activate scimap ``` Install `scimap` directly into an activated virtual environment: ```python $ pip install scimap ``` After installation, the package can be imported as: ```python $ python >>> import scimap as sm ``` ## Get Started #### Detailed documentation of `scimap` functions and tutorials are available [here](http://scimap.xyz/). *SCIMAP* development is led by [Ajit Johnson Nirmal](https://ajitjohnson.com/) at the Laboratory of Systems Pharmacology, Harvard Medical School. ## Funding This work is supported by the following NIH grant K99-CA256497 %package -n python3-scimap Summary: Spatial Single-Cell Analysis Toolkit Provides: python-scimap BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-scimap # Single-Cell Image Analysis Package
[![build: Unix-Mac-Win](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml) [![Docs](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml) [![Downloads](https://pepy.tech/badge/scimap)](https://pepy.tech/project/scimap) [![PyPI Version](https://img.shields.io/pypi/v/scimap.svg)](https://pypi.org/project/scimap) [![PyPI License](https://img.shields.io/pypi/l/scimap.svg)](https://pypi.org/project/scimap) [![Gitter chat](https://badges.gitter.im/scimap_io/community.png)](https://gitter.im/scimap_io/community) [![DOI](https://zenodo.org/badge/271099296.svg)](https://zenodo.org/badge/latestdoi/271099296)

Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spatial datasets mapped to XY coordinates. The package uses the [anndata](https://anndata.readthedocs.io/en/stable/anndata.AnnData.html) framework making it easy to integrate with other popular single-cell analysis toolkits. It includes preprocessing, phenotyping, visualization, clustering, spatial analysis and differential spatial testing. The Python-based implementation efficiently deals with large datasets of millions of cells. ## Installation We strongly recommend installing `scimap` in a fresh virtual environment. ``` # If you have conda installed conda create --name scimap python=3.8 conda activate scimap ``` Install `scimap` directly into an activated virtual environment: ```python $ pip install scimap ``` After installation, the package can be imported as: ```python $ python >>> import scimap as sm ``` ## Get Started #### Detailed documentation of `scimap` functions and tutorials are available [here](http://scimap.xyz/). *SCIMAP* development is led by [Ajit Johnson Nirmal](https://ajitjohnson.com/) at the Laboratory of Systems Pharmacology, Harvard Medical School. ## Funding This work is supported by the following NIH grant K99-CA256497 %package help Summary: Development documents and examples for scimap Provides: python3-scimap-doc %description help # Single-Cell Image Analysis Package
[![build: Unix-Mac-Win](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml) [![Docs](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml) [![Downloads](https://pepy.tech/badge/scimap)](https://pepy.tech/project/scimap) [![PyPI Version](https://img.shields.io/pypi/v/scimap.svg)](https://pypi.org/project/scimap) [![PyPI License](https://img.shields.io/pypi/l/scimap.svg)](https://pypi.org/project/scimap) [![Gitter chat](https://badges.gitter.im/scimap_io/community.png)](https://gitter.im/scimap_io/community) [![DOI](https://zenodo.org/badge/271099296.svg)](https://zenodo.org/badge/latestdoi/271099296)

Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spatial datasets mapped to XY coordinates. The package uses the [anndata](https://anndata.readthedocs.io/en/stable/anndata.AnnData.html) framework making it easy to integrate with other popular single-cell analysis toolkits. It includes preprocessing, phenotyping, visualization, clustering, spatial analysis and differential spatial testing. The Python-based implementation efficiently deals with large datasets of millions of cells. ## Installation We strongly recommend installing `scimap` in a fresh virtual environment. ``` # If you have conda installed conda create --name scimap python=3.8 conda activate scimap ``` Install `scimap` directly into an activated virtual environment: ```python $ pip install scimap ``` After installation, the package can be imported as: ```python $ python >>> import scimap as sm ``` ## Get Started #### Detailed documentation of `scimap` functions and tutorials are available [here](http://scimap.xyz/). *SCIMAP* development is led by [Ajit Johnson Nirmal](https://ajitjohnson.com/) at the Laboratory of Systems Pharmacology, Harvard Medical School. ## Funding This work is supported by the following NIH grant K99-CA256497 %prep %autosetup -n scimap-1.1.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-scimap -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.1.0-1 - Package Spec generated