%global _empty_manifest_terminate_build 0 Name: python-RelevanceAI Version: 3.2.22 Release: 1 Summary: please add a summary manually as the author left a blank one License: Apache Software License URL: https://tryrelevance.com/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cb/b9/e2c302e1b7af5b72efff6d37e4a7fcb0d0eb2233938ebe9fb2da7241e2a4/RelevanceAI-3.2.22.tar.gz BuildArch: noarch Requires: python3-tqdm Requires: python3-pandas Requires: python3-loguru Requires: python3-document-utils Requires: python3-requests Requires: python3-numpy Requires: python3-joblib Requires: python3-scikit-learn Requires: python3-typing-extensions Requires: python3-analytics-python Requires: python3-aiohttp Requires: python3-appdirs Requires: python3-orjson Requires: python3-psutil Requires: python3-autopep8 Requires: python3-pylint Requires: python3-jupyter Requires: python3-pre-commit Requires: python3-black Requires: python3-mypy Requires: python3-xenon Requires: python3-pytest Requires: python3-pytest-dotenv Requires: python3-pytest-xdist Requires: python3-pytest-cov Requires: python3-pytest-mock Requires: python3-types-requests Requires: python3-pytest-sugar Requires: python3-pytest-rerunfailures Requires: python3-tqdm Requires: python3-pandas Requires: python3-loguru Requires: python3-document-utils Requires: python3-requests Requires: python3-numpy Requires: python3-joblib Requires: python3-scikit-learn Requires: python3-typing-extensions Requires: python3-analytics-python Requires: python3-aiohttp Requires: python3-appdirs Requires: python3-orjson Requires: python3-psutil Requires: python3-openpyxl Requires: python3-fsspec Requires: python3-umap-learn Requires: python3-sphinx-rtd-theme Requires: python3-pydata-sphinx-theme Requires: python3-sphinx-autoapi Requires: python3-sphinx-autodoc-typehints Requires: python3-autopep8 Requires: python3-pylint Requires: python3-jupyter Requires: python3-pytest Requires: python3-pytest-dotenv Requires: python3-pytest-xdist Requires: python3-pytest-cov Requires: python3-pytest-mock Requires: python3-mypy Requires: python3-types-requests Requires: python3-pytest-sugar Requires: python3-pytest-rerunfailures Requires: python3-tqdm Requires: python3-pandas Requires: python3-loguru Requires: python3-document-utils Requires: python3-requests Requires: python3-numpy Requires: python3-joblib Requires: python3-scikit-learn Requires: python3-typing-extensions Requires: python3-analytics-python Requires: python3-aiohttp Requires: python3-appdirs Requires: python3-orjson Requires: python3-psutil Requires: python3-openpyxl Requires: python3-fsspec Requires: python3-umap-learn Requires: python3-sphinx-rtd-theme Requires: python3-pydata-sphinx-theme Requires: python3-sphinx-autoapi Requires: python3-sphinx-autodoc-typehints Requires: python3-autopep8 Requires: python3-pylint Requires: python3-jupyter Requires: python3-pytest Requires: python3-pytest-dotenv Requires: python3-pytest-xdist Requires: python3-pytest-cov Requires: python3-pytest-mock Requires: python3-mypy Requires: python3-types-requests Requires: python3-pytest-sugar Requires: python3-pytest-rerunfailures Requires: python3-tqdm Requires: python3-pandas Requires: python3-loguru Requires: python3-document-utils Requires: python3-requests Requires: python3-numpy Requires: python3-joblib Requires: python3-scikit-learn Requires: python3-typing-extensions Requires: python3-analytics-python Requires: python3-aiohttp Requires: python3-appdirs Requires: python3-orjson Requires: python3-psutil Requires: python3-openpyxl Requires: python3-fsspec Requires: python3-umap-learn Requires: python3-sphinx-rtd-theme Requires: python3-pydata-sphinx-theme Requires: python3-sphinx-autoapi Requires: python3-sphinx-autodoc-typehints Requires: python3-sphinx-rtd-theme Requires: python3-pydata-sphinx-theme Requires: python3-sphinx-autoapi Requires: python3-sphinx-autodoc-typehints Requires: python3-tqdm Requires: python3-pandas Requires: python3-loguru Requires: python3-document-utils Requires: python3-requests Requires: python3-numpy Requires: python3-joblib Requires: python3-scikit-learn Requires: python3-typing-extensions Requires: python3-analytics-python Requires: python3-aiohttp Requires: python3-appdirs Requires: python3-orjson Requires: python3-psutil Requires: python3-openpyxl Requires: python3-fsspec Requires: python3-hdbscan Requires: python3-scikit-learn-extra Requires: python3-tqdm Requires: python3-pandas Requires: python3-loguru Requires: python3-document-utils Requires: python3-requests Requires: python3-numpy Requires: python3-joblib Requires: python3-scikit-learn Requires: python3-typing-extensions Requires: python3-analytics-python Requires: python3-aiohttp Requires: python3-appdirs Requires: python3-orjson Requires: python3-psutil Requires: python3-sentence-transformers Requires: python3-jsonshower Requires: python3-tqdm Requires: python3-pandas Requires: python3-loguru Requires: python3-document-utils Requires: python3-requests Requires: python3-numpy Requires: python3-joblib Requires: python3-scikit-learn Requires: python3-typing-extensions Requires: python3-analytics-python Requires: python3-aiohttp Requires: python3-appdirs Requires: python3-orjson Requires: python3-psutil Requires: python3-pytest Requires: python3-pytest-dotenv Requires: python3-pytest-xdist Requires: python3-pytest-cov Requires: python3-pytest-mock Requires: python3-mypy Requires: python3-types-requests Requires: python3-pytest-sugar Requires: python3-pytest-rerunfailures Requires: python3-tqdm Requires: python3-pandas Requires: python3-loguru Requires: python3-document-utils Requires: python3-requests Requires: python3-numpy Requires: python3-joblib Requires: python3-scikit-learn Requires: python3-typing-extensions Requires: python3-analytics-python Requires: python3-aiohttp Requires: python3-appdirs Requires: python3-orjson Requires: python3-psutil Requires: python3-openpyxl Requires: python3-fsspec Requires: python3-umap-learn Requires: python3-umap-learn %description ![Github Banner](assets/github_banner.png) ## Relevance AI - The ML Platform for Unstructured Data Analysis [![Documentation Status](https://readthedocs.org/projects/relevanceai/badge/?version=latest)](https://relevanceai.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/pypi/l/relevanceai)](https://img.shields.io/pypi/l/relevanceai) 🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more. 🔥 Use Relevance to unlock the value of your unstructured data: - ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code. - ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images. - 📊 Create charts for both structured and unstructured. - 🔎 Drilldown with filters and similarity search to explore and find insights. - 🚀 Share data apps with your team. [Sign up for a free account ->](https://hubs.ly/Q017CkXK0) Relevance AI also acts as a platform for: - 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters. - 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases. ## 🧠 Documentation | Type | Link | | ------------- | ----------- | | Python API | [Documentation](https://sdk.tryrelevance.com/) | | Python Reference | [Documentation](https://relevanceai.readthedocs.io/en/latest/) | | Cloud Dashboard | [Documentation](https://docs.tryrelevance.com/) | ## 🛠️ Installation Using pip: ```{bash} pip install -U relevanceai ``` Using conda: ```{bash} conda install -c relevance relevanceai ``` ## ⏩ Quickstart [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/RelevanceAI/RelevanceAI/blob/development/guides/quickstart_guide.ipynb) Login to `relevanceai`: ```{python} from relevanceai import Client client = Client() ``` Prepare your documents for insertion by following the below format: - Each document should be a dictionary - Include a field `_id` as a primary key, otherwise it's automatically generated - Suffix vector fields with `_vector_` ```{python} docs = [ {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"}, {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"}, {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"}, {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"}, {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"}, ] ``` ### Insert data into a dataset Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you. ```{python} ds = client.Dataset("quickstart") ds.insert_documents(docs) ``` > Quick tip! Our Dataset object is compatible with common dataframes methods like `.head()`, `.shape()` and `.info()`. ### Perform vector search ```{python} query = [ {"vector": [0.2, 0.2, 0.2], "field": "example_vector_"} ] results = ds.search( vector_search_query=query, page_size=3, ) ``` [Learn more about how to flexibly configure your vector search ->](https://sdk.tryrelevance.com/docs/search) ### Perform clustering Generate clusters ```{python} clusterop = ds.cluster(vector_fields=["example_vector_"]) clusterop.list_closest() ``` Generate clusters with sklearn ```{python} from sklearn.cluster import AgglomerativeClustering cluster_model = AgglomerativeClustering() clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative") clusterop.list_closest() ``` [Learn more about how to flexibly configure your clustering ->](https://sdk.tryrelevance.com/docs/search) ## 🧰 Config The config object contains the adjustable global settings for the SDK. For a description of all the settings, see [here](https://github.com/RelevanceAI/RelevanceAI/blob/development/relevanceai/constants/config.ini). To view setting options, run the following: ```{python} client.config.options ``` The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging: ```{python} client.config.set_option('logging.enable_logging', False) ``` To restore all options to their default, run the following: ### Changing the base URL You can change the base URL as such: ```{python} client.base_url = "https://.../latest" ``` ## 🚧 Development ### Getting Started To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing. ```{bash} python -m pip install pytest mypy ``` Then run testing using: > Don't forget to set your test credentials! ```{bash} export TEST_PROJECT = xxx export TEST_API_KEY = xxx python -m pytest mypy relevanceai ``` Set up precommit ```{bash} pip install precommit pre-commit install ``` %package -n python3-RelevanceAI Summary: please add a summary manually as the author left a blank one Provides: python-RelevanceAI BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-RelevanceAI ![Github Banner](assets/github_banner.png) ## Relevance AI - The ML Platform for Unstructured Data Analysis [![Documentation Status](https://readthedocs.org/projects/relevanceai/badge/?version=latest)](https://relevanceai.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/pypi/l/relevanceai)](https://img.shields.io/pypi/l/relevanceai) 🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more. 🔥 Use Relevance to unlock the value of your unstructured data: - ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code. - ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images. - 📊 Create charts for both structured and unstructured. - 🔎 Drilldown with filters and similarity search to explore and find insights. - 🚀 Share data apps with your team. [Sign up for a free account ->](https://hubs.ly/Q017CkXK0) Relevance AI also acts as a platform for: - 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters. - 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases. ## 🧠 Documentation | Type | Link | | ------------- | ----------- | | Python API | [Documentation](https://sdk.tryrelevance.com/) | | Python Reference | [Documentation](https://relevanceai.readthedocs.io/en/latest/) | | Cloud Dashboard | [Documentation](https://docs.tryrelevance.com/) | ## 🛠️ Installation Using pip: ```{bash} pip install -U relevanceai ``` Using conda: ```{bash} conda install -c relevance relevanceai ``` ## ⏩ Quickstart [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/RelevanceAI/RelevanceAI/blob/development/guides/quickstart_guide.ipynb) Login to `relevanceai`: ```{python} from relevanceai import Client client = Client() ``` Prepare your documents for insertion by following the below format: - Each document should be a dictionary - Include a field `_id` as a primary key, otherwise it's automatically generated - Suffix vector fields with `_vector_` ```{python} docs = [ {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"}, {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"}, {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"}, {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"}, {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"}, ] ``` ### Insert data into a dataset Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you. ```{python} ds = client.Dataset("quickstart") ds.insert_documents(docs) ``` > Quick tip! Our Dataset object is compatible with common dataframes methods like `.head()`, `.shape()` and `.info()`. ### Perform vector search ```{python} query = [ {"vector": [0.2, 0.2, 0.2], "field": "example_vector_"} ] results = ds.search( vector_search_query=query, page_size=3, ) ``` [Learn more about how to flexibly configure your vector search ->](https://sdk.tryrelevance.com/docs/search) ### Perform clustering Generate clusters ```{python} clusterop = ds.cluster(vector_fields=["example_vector_"]) clusterop.list_closest() ``` Generate clusters with sklearn ```{python} from sklearn.cluster import AgglomerativeClustering cluster_model = AgglomerativeClustering() clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative") clusterop.list_closest() ``` [Learn more about how to flexibly configure your clustering ->](https://sdk.tryrelevance.com/docs/search) ## 🧰 Config The config object contains the adjustable global settings for the SDK. For a description of all the settings, see [here](https://github.com/RelevanceAI/RelevanceAI/blob/development/relevanceai/constants/config.ini). To view setting options, run the following: ```{python} client.config.options ``` The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging: ```{python} client.config.set_option('logging.enable_logging', False) ``` To restore all options to their default, run the following: ### Changing the base URL You can change the base URL as such: ```{python} client.base_url = "https://.../latest" ``` ## 🚧 Development ### Getting Started To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing. ```{bash} python -m pip install pytest mypy ``` Then run testing using: > Don't forget to set your test credentials! ```{bash} export TEST_PROJECT = xxx export TEST_API_KEY = xxx python -m pytest mypy relevanceai ``` Set up precommit ```{bash} pip install precommit pre-commit install ``` %package help Summary: Development documents and examples for RelevanceAI Provides: python3-RelevanceAI-doc %description help ![Github Banner](assets/github_banner.png) ## Relevance AI - The ML Platform for Unstructured Data Analysis [![Documentation Status](https://readthedocs.org/projects/relevanceai/badge/?version=latest)](https://relevanceai.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/pypi/l/relevanceai)](https://img.shields.io/pypi/l/relevanceai) 🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more. 🔥 Use Relevance to unlock the value of your unstructured data: - ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code. - ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images. - 📊 Create charts for both structured and unstructured. - 🔎 Drilldown with filters and similarity search to explore and find insights. - 🚀 Share data apps with your team. [Sign up for a free account ->](https://hubs.ly/Q017CkXK0) Relevance AI also acts as a platform for: - 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters. - 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases. ## 🧠 Documentation | Type | Link | | ------------- | ----------- | | Python API | [Documentation](https://sdk.tryrelevance.com/) | | Python Reference | [Documentation](https://relevanceai.readthedocs.io/en/latest/) | | Cloud Dashboard | [Documentation](https://docs.tryrelevance.com/) | ## 🛠️ Installation Using pip: ```{bash} pip install -U relevanceai ``` Using conda: ```{bash} conda install -c relevance relevanceai ``` ## ⏩ Quickstart [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/RelevanceAI/RelevanceAI/blob/development/guides/quickstart_guide.ipynb) Login to `relevanceai`: ```{python} from relevanceai import Client client = Client() ``` Prepare your documents for insertion by following the below format: - Each document should be a dictionary - Include a field `_id` as a primary key, otherwise it's automatically generated - Suffix vector fields with `_vector_` ```{python} docs = [ {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"}, {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"}, {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"}, {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"}, {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"}, ] ``` ### Insert data into a dataset Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you. ```{python} ds = client.Dataset("quickstart") ds.insert_documents(docs) ``` > Quick tip! Our Dataset object is compatible with common dataframes methods like `.head()`, `.shape()` and `.info()`. ### Perform vector search ```{python} query = [ {"vector": [0.2, 0.2, 0.2], "field": "example_vector_"} ] results = ds.search( vector_search_query=query, page_size=3, ) ``` [Learn more about how to flexibly configure your vector search ->](https://sdk.tryrelevance.com/docs/search) ### Perform clustering Generate clusters ```{python} clusterop = ds.cluster(vector_fields=["example_vector_"]) clusterop.list_closest() ``` Generate clusters with sklearn ```{python} from sklearn.cluster import AgglomerativeClustering cluster_model = AgglomerativeClustering() clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative") clusterop.list_closest() ``` [Learn more about how to flexibly configure your clustering ->](https://sdk.tryrelevance.com/docs/search) ## 🧰 Config The config object contains the adjustable global settings for the SDK. For a description of all the settings, see [here](https://github.com/RelevanceAI/RelevanceAI/blob/development/relevanceai/constants/config.ini). To view setting options, run the following: ```{python} client.config.options ``` The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging: ```{python} client.config.set_option('logging.enable_logging', False) ``` To restore all options to their default, run the following: ### Changing the base URL You can change the base URL as such: ```{python} client.base_url = "https://.../latest" ``` ## 🚧 Development ### Getting Started To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing. ```{bash} python -m pip install pytest mypy ``` Then run testing using: > Don't forget to set your test credentials! ```{bash} export TEST_PROJECT = xxx export TEST_API_KEY = xxx python -m pytest mypy relevanceai ``` Set up precommit ```{bash} pip install precommit pre-commit install ``` %prep %autosetup -n RelevanceAI-3.2.22 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-RelevanceAI -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 3.2.22-1 - Package Spec generated