%global _empty_manifest_terminate_build 0 Name: python-labml Version: 0.4.162 Release: 1 Summary: Organize Machine Learning Experiments License: MIT License URL: https://github.com/labml.ai/labml Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1f/1c/0749cce878d9ae6e976062d18aa139d2fbb8559eae1ad63cacff6bf98d31/labml-0.4.162.tar.gz BuildArch: noarch Requires: python3-gitpython Requires: python3-pyyaml Requires: python3-numpy %description

Monitor deep learning model training and hardware usage from mobile.

[![PyPI - Python Version](https://badge.fury.io/py/labml.svg)](https://badge.fury.io/py/labml) [![PyPI Status](https://pepy.tech/badge/labml)](https://pepy.tech/project/labml) [![Docs](https://img.shields.io/badge/labml-docs-blue)](https://docs.labml.ai/) [![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai?ref_src=twsrc%5Etfw)
### 🔥 Features * Monitor running experiments from [mobile phone](https://github.com/labmlai/labml/tree/master/app) (or laptop) [![View Run](https://img.shields.io/badge/labml-experiment-brightgreen)](https://app.labml.ai/run/9e7f39e047e811ebbaff2b26e3148b3d) * Monitor [hardware usage on any computer](https://github.com/labmlai/labml/blob/master/guides/hardware_monitoring.md) with a single command * Integrate with just 2 lines of code (see examples below) * Keeps track of experiments including infomation like git commit, configurations and hyper-parameters * Keep Tensorboard logs organized * Save and load checkpoints * API for custom visualizations [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/labmlai/labml/blob/master/samples/stocks/analysis.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vpj/poker/blob/master/kuhn_cfr/kuhn_cfr.ipynb) * Pretty logs of training progress * [Change hyper-parameters while the model is training](https://github.com/labmlai/labml/blob/master/guides/dynamic_hyperparameters.md) * Open source! we also have a small hosted server for the mobile web app ### Installation You can install this package using PIP. ```bash pip install labml ``` ### PyTorch example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Ldu5tr0oYN_XcYQORgOkIY_Ohsi152fz?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/monitoring-ml-model-training-on-your-mobile-phone) ```python from labml import tracker, experiment with experiment.record(name='sample', exp_conf=conf): for i in range(50): loss, accuracy = train() tracker.save(i, {'loss': loss, 'accuracy': accuracy}) ``` ### PyTorch Lightning example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/15aSPDwbKihDu_c3aFHNPGG5POjVlM2KO?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/pytorch-lightning) ```python from labml import experiment from labml.utils.lightening import LabMLLighteningLogger trainer = pl.Trainer(gpus=1, max_epochs=5, progress_bar_refresh_rate=20, logger=LabMLLighteningLogger()) with experiment.record(name='sample', exp_conf=conf, disable_screen=True): trainer.fit(model, data_loader) ``` ### TensorFlow 2.X Keras example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lx1dUG3MGaIDnq47HVFlzJ2lytjSa9Zy?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/monitor-keras-model-training-on-your-mobile-phone) ```python from labml import experiment from labml.utils.keras import LabMLKerasCallback with experiment.record(name='sample', exp_conf=conf): for i in range(50): model.fit(x_train, y_train, epochs=conf['epochs'], validation_data=(x_test, y_test), callbacks=[LabMLKerasCallback()], verbose=None) ``` ### 📚 Documentation * [Python API Reference](https://docs.labml.ai) * [Samples](https://github.com/labmlai/labml/tree/master/samples) ##### Guides * [API to create experiments](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/experiment.ipynb) * [Track training metrics](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/tracker.ipynb) * [Monitored training loop and other iterators](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/monitor.ipynb) * [API for custom visualizations](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/analytics.ipynb) * [Configurations management API](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/configs.ipynb) * [Logger for stylized logging](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/logger.ipynb) ### 🖥 Screenshots #### Formatted training loop output
Sample Logs
#### Custom visualizations based on Tensorboard logs
Analytics
## Tools ### [Hosting your own experiments server](https://docs.labml.ai/cli/labml.html#cmdoption-labml-arg-app-server) ```sh # Install the package pip install labml-app -U # Start the server labml app-server ``` ### [Training models on cloud](https://github.com/labmlai/labml/tree/master/remote) ```bash # Install the package pip install labml_remote # Initialize the project labml_remote init # Add cloud server(s) to .remote/configs.yaml # Prepare the remote server(s) labml_remote prepare # Start a PyTorch distributed training job labml_remote helper-torch-launch --cmd 'train.py' --nproc-per-node 2 --env GLOO_SOCKET_IFNAME enp1s0 ``` ### [Monitoring hardware usage](https://github.com/labmlai/labml/blob/master/guides/hardware_monitoring.md) ```sh # Install packages and dependencies pip install labml psutil py3nvml # Start monitoring labml monitor ``` ## Other Guides #### [Setting up a local Ubuntu workstation for deep learning](https://github.com/labmlai/labml/blob/master/guides/local-ubuntu.md) #### [Setting up a cloud computer for deep learning](https://github.com/labmlai/labml/blob/master/guides/remote-python.md) ## Citing If you use LabML for academic research, please cite the library using the following BibTeX entry. ```bibtext @misc{labml, author = {Varuna Jayasiri, Nipun Wijerathne}, title = {labml.ai: A library to organize machine learning experiments}, year = {2020}, url = {https://labml.ai/}, } ``` %package -n python3-labml Summary: Organize Machine Learning Experiments Provides: python-labml BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-labml

Monitor deep learning model training and hardware usage from mobile.

[![PyPI - Python Version](https://badge.fury.io/py/labml.svg)](https://badge.fury.io/py/labml) [![PyPI Status](https://pepy.tech/badge/labml)](https://pepy.tech/project/labml) [![Docs](https://img.shields.io/badge/labml-docs-blue)](https://docs.labml.ai/) [![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai?ref_src=twsrc%5Etfw)
### 🔥 Features * Monitor running experiments from [mobile phone](https://github.com/labmlai/labml/tree/master/app) (or laptop) [![View Run](https://img.shields.io/badge/labml-experiment-brightgreen)](https://app.labml.ai/run/9e7f39e047e811ebbaff2b26e3148b3d) * Monitor [hardware usage on any computer](https://github.com/labmlai/labml/blob/master/guides/hardware_monitoring.md) with a single command * Integrate with just 2 lines of code (see examples below) * Keeps track of experiments including infomation like git commit, configurations and hyper-parameters * Keep Tensorboard logs organized * Save and load checkpoints * API for custom visualizations [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/labmlai/labml/blob/master/samples/stocks/analysis.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vpj/poker/blob/master/kuhn_cfr/kuhn_cfr.ipynb) * Pretty logs of training progress * [Change hyper-parameters while the model is training](https://github.com/labmlai/labml/blob/master/guides/dynamic_hyperparameters.md) * Open source! we also have a small hosted server for the mobile web app ### Installation You can install this package using PIP. ```bash pip install labml ``` ### PyTorch example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Ldu5tr0oYN_XcYQORgOkIY_Ohsi152fz?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/monitoring-ml-model-training-on-your-mobile-phone) ```python from labml import tracker, experiment with experiment.record(name='sample', exp_conf=conf): for i in range(50): loss, accuracy = train() tracker.save(i, {'loss': loss, 'accuracy': accuracy}) ``` ### PyTorch Lightning example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/15aSPDwbKihDu_c3aFHNPGG5POjVlM2KO?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/pytorch-lightning) ```python from labml import experiment from labml.utils.lightening import LabMLLighteningLogger trainer = pl.Trainer(gpus=1, max_epochs=5, progress_bar_refresh_rate=20, logger=LabMLLighteningLogger()) with experiment.record(name='sample', exp_conf=conf, disable_screen=True): trainer.fit(model, data_loader) ``` ### TensorFlow 2.X Keras example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lx1dUG3MGaIDnq47HVFlzJ2lytjSa9Zy?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/monitor-keras-model-training-on-your-mobile-phone) ```python from labml import experiment from labml.utils.keras import LabMLKerasCallback with experiment.record(name='sample', exp_conf=conf): for i in range(50): model.fit(x_train, y_train, epochs=conf['epochs'], validation_data=(x_test, y_test), callbacks=[LabMLKerasCallback()], verbose=None) ``` ### 📚 Documentation * [Python API Reference](https://docs.labml.ai) * [Samples](https://github.com/labmlai/labml/tree/master/samples) ##### Guides * [API to create experiments](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/experiment.ipynb) * [Track training metrics](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/tracker.ipynb) * [Monitored training loop and other iterators](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/monitor.ipynb) * [API for custom visualizations](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/analytics.ipynb) * [Configurations management API](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/configs.ipynb) * [Logger for stylized logging](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/logger.ipynb) ### 🖥 Screenshots #### Formatted training loop output
Sample Logs
#### Custom visualizations based on Tensorboard logs
Analytics
## Tools ### [Hosting your own experiments server](https://docs.labml.ai/cli/labml.html#cmdoption-labml-arg-app-server) ```sh # Install the package pip install labml-app -U # Start the server labml app-server ``` ### [Training models on cloud](https://github.com/labmlai/labml/tree/master/remote) ```bash # Install the package pip install labml_remote # Initialize the project labml_remote init # Add cloud server(s) to .remote/configs.yaml # Prepare the remote server(s) labml_remote prepare # Start a PyTorch distributed training job labml_remote helper-torch-launch --cmd 'train.py' --nproc-per-node 2 --env GLOO_SOCKET_IFNAME enp1s0 ``` ### [Monitoring hardware usage](https://github.com/labmlai/labml/blob/master/guides/hardware_monitoring.md) ```sh # Install packages and dependencies pip install labml psutil py3nvml # Start monitoring labml monitor ``` ## Other Guides #### [Setting up a local Ubuntu workstation for deep learning](https://github.com/labmlai/labml/blob/master/guides/local-ubuntu.md) #### [Setting up a cloud computer for deep learning](https://github.com/labmlai/labml/blob/master/guides/remote-python.md) ## Citing If you use LabML for academic research, please cite the library using the following BibTeX entry. ```bibtext @misc{labml, author = {Varuna Jayasiri, Nipun Wijerathne}, title = {labml.ai: A library to organize machine learning experiments}, year = {2020}, url = {https://labml.ai/}, } ``` %package help Summary: Development documents and examples for labml Provides: python3-labml-doc %description help

Monitor deep learning model training and hardware usage from mobile.

[![PyPI - Python Version](https://badge.fury.io/py/labml.svg)](https://badge.fury.io/py/labml) [![PyPI Status](https://pepy.tech/badge/labml)](https://pepy.tech/project/labml) [![Docs](https://img.shields.io/badge/labml-docs-blue)](https://docs.labml.ai/) [![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai?ref_src=twsrc%5Etfw)
### 🔥 Features * Monitor running experiments from [mobile phone](https://github.com/labmlai/labml/tree/master/app) (or laptop) [![View Run](https://img.shields.io/badge/labml-experiment-brightgreen)](https://app.labml.ai/run/9e7f39e047e811ebbaff2b26e3148b3d) * Monitor [hardware usage on any computer](https://github.com/labmlai/labml/blob/master/guides/hardware_monitoring.md) with a single command * Integrate with just 2 lines of code (see examples below) * Keeps track of experiments including infomation like git commit, configurations and hyper-parameters * Keep Tensorboard logs organized * Save and load checkpoints * API for custom visualizations [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/labmlai/labml/blob/master/samples/stocks/analysis.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vpj/poker/blob/master/kuhn_cfr/kuhn_cfr.ipynb) * Pretty logs of training progress * [Change hyper-parameters while the model is training](https://github.com/labmlai/labml/blob/master/guides/dynamic_hyperparameters.md) * Open source! we also have a small hosted server for the mobile web app ### Installation You can install this package using PIP. ```bash pip install labml ``` ### PyTorch example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Ldu5tr0oYN_XcYQORgOkIY_Ohsi152fz?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/monitoring-ml-model-training-on-your-mobile-phone) ```python from labml import tracker, experiment with experiment.record(name='sample', exp_conf=conf): for i in range(50): loss, accuracy = train() tracker.save(i, {'loss': loss, 'accuracy': accuracy}) ``` ### PyTorch Lightning example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/15aSPDwbKihDu_c3aFHNPGG5POjVlM2KO?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/pytorch-lightning) ```python from labml import experiment from labml.utils.lightening import LabMLLighteningLogger trainer = pl.Trainer(gpus=1, max_epochs=5, progress_bar_refresh_rate=20, logger=LabMLLighteningLogger()) with experiment.record(name='sample', exp_conf=conf, disable_screen=True): trainer.fit(model, data_loader) ``` ### TensorFlow 2.X Keras example [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lx1dUG3MGaIDnq47HVFlzJ2lytjSa9Zy?usp=sharing) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/hnipun/monitor-keras-model-training-on-your-mobile-phone) ```python from labml import experiment from labml.utils.keras import LabMLKerasCallback with experiment.record(name='sample', exp_conf=conf): for i in range(50): model.fit(x_train, y_train, epochs=conf['epochs'], validation_data=(x_test, y_test), callbacks=[LabMLKerasCallback()], verbose=None) ``` ### 📚 Documentation * [Python API Reference](https://docs.labml.ai) * [Samples](https://github.com/labmlai/labml/tree/master/samples) ##### Guides * [API to create experiments](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/experiment.ipynb) * [Track training metrics](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/tracker.ipynb) * [Monitored training loop and other iterators](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/monitor.ipynb) * [API for custom visualizations](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/analytics.ipynb) * [Configurations management API](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/configs.ipynb) * [Logger for stylized logging](https://colab.research.google.com/github/labmlai/labml/blob/master/guides/logger.ipynb) ### 🖥 Screenshots #### Formatted training loop output
Sample Logs
#### Custom visualizations based on Tensorboard logs
Analytics
## Tools ### [Hosting your own experiments server](https://docs.labml.ai/cli/labml.html#cmdoption-labml-arg-app-server) ```sh # Install the package pip install labml-app -U # Start the server labml app-server ``` ### [Training models on cloud](https://github.com/labmlai/labml/tree/master/remote) ```bash # Install the package pip install labml_remote # Initialize the project labml_remote init # Add cloud server(s) to .remote/configs.yaml # Prepare the remote server(s) labml_remote prepare # Start a PyTorch distributed training job labml_remote helper-torch-launch --cmd 'train.py' --nproc-per-node 2 --env GLOO_SOCKET_IFNAME enp1s0 ``` ### [Monitoring hardware usage](https://github.com/labmlai/labml/blob/master/guides/hardware_monitoring.md) ```sh # Install packages and dependencies pip install labml psutil py3nvml # Start monitoring labml monitor ``` ## Other Guides #### [Setting up a local Ubuntu workstation for deep learning](https://github.com/labmlai/labml/blob/master/guides/local-ubuntu.md) #### [Setting up a cloud computer for deep learning](https://github.com/labmlai/labml/blob/master/guides/remote-python.md) ## Citing If you use LabML for academic research, please cite the library using the following BibTeX entry. ```bibtext @misc{labml, author = {Varuna Jayasiri, Nipun Wijerathne}, title = {labml.ai: A library to organize machine learning experiments}, year = {2020}, url = {https://labml.ai/}, } ``` %prep %autosetup -n labml-0.4.162 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-labml -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.4.162-1 - Package Spec generated