%global _empty_manifest_terminate_build 0 Name: python-ml-insights Version: 1.0.2 Release: 1 Summary: Package to calibrate and understand ML Models License: MIT license URL: http://ml-insights.readthedocs.io/en/latest/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/21/a3/b43ed7c627ceabb7c30c583e3bd67a7d15be10722da2a1d8c0320c99ff82/ml_insights-1.0.2.tar.gz BuildArch: noarch Requires: python3-pandas Requires: python3-numpy Requires: python3-matplotlib Requires: python3-scikit-learn Requires: python3-scipy Requires: python3-splinecalib %description Welcome to ML-Insights! This package contains two core sets of functions: 1) Calibration 2) Interpreting Models For probability calibration, the main class is `SplineCalib`. Given a set of model outputs and the "true" classes, you can `fit` a SplineCalib object. That object can then be used to `calibrate` future model predictions post-hoc. >>> model.fit(X_train, y_train) >>> sc = mli.SplineCalib() >>> sc.fit(X_valid, y_valid) >>> uncalib_preds = model.predict_proba(X_test) >>> calib_preds = sc.calibrate(uncalib_preds) >>> cv_preds = mli.cv_predictions(model, X_train, y_train) >>> model.fit(X_train, y_train) >>> sc = mli.SplineCalib() >>> sc.fit(cv_preds, y_train) >>> uncalib_preds = model.predict_proba(X_test) >>> calib_preds = sc.calibrate(uncalib_preds) For model interpretability, we provide the `ice_plot` and `histogram_pair` functions as well as other tools. >>> rd = mli.get_range_dict(X_train) >>> mli.ice_plot(model, X_test.sample(3), X_train.columns, rd) >>> mli.histogram_pair(df.outcome, df.feature, bins=np.linspace(0,100,11)) Please see the documentation and examples at the links below. - `Documentation `_ - `Notebook Examples and Usage `_ %package -n python3-ml-insights Summary: Package to calibrate and understand ML Models Provides: python-ml-insights BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-ml-insights Welcome to ML-Insights! This package contains two core sets of functions: 1) Calibration 2) Interpreting Models For probability calibration, the main class is `SplineCalib`. Given a set of model outputs and the "true" classes, you can `fit` a SplineCalib object. That object can then be used to `calibrate` future model predictions post-hoc. >>> model.fit(X_train, y_train) >>> sc = mli.SplineCalib() >>> sc.fit(X_valid, y_valid) >>> uncalib_preds = model.predict_proba(X_test) >>> calib_preds = sc.calibrate(uncalib_preds) >>> cv_preds = mli.cv_predictions(model, X_train, y_train) >>> model.fit(X_train, y_train) >>> sc = mli.SplineCalib() >>> sc.fit(cv_preds, y_train) >>> uncalib_preds = model.predict_proba(X_test) >>> calib_preds = sc.calibrate(uncalib_preds) For model interpretability, we provide the `ice_plot` and `histogram_pair` functions as well as other tools. >>> rd = mli.get_range_dict(X_train) >>> mli.ice_plot(model, X_test.sample(3), X_train.columns, rd) >>> mli.histogram_pair(df.outcome, df.feature, bins=np.linspace(0,100,11)) Please see the documentation and examples at the links below. - `Documentation `_ - `Notebook Examples and Usage `_ %package help Summary: Development documents and examples for ml-insights Provides: python3-ml-insights-doc %description help Welcome to ML-Insights! This package contains two core sets of functions: 1) Calibration 2) Interpreting Models For probability calibration, the main class is `SplineCalib`. Given a set of model outputs and the "true" classes, you can `fit` a SplineCalib object. That object can then be used to `calibrate` future model predictions post-hoc. >>> model.fit(X_train, y_train) >>> sc = mli.SplineCalib() >>> sc.fit(X_valid, y_valid) >>> uncalib_preds = model.predict_proba(X_test) >>> calib_preds = sc.calibrate(uncalib_preds) >>> cv_preds = mli.cv_predictions(model, X_train, y_train) >>> model.fit(X_train, y_train) >>> sc = mli.SplineCalib() >>> sc.fit(cv_preds, y_train) >>> uncalib_preds = model.predict_proba(X_test) >>> calib_preds = sc.calibrate(uncalib_preds) For model interpretability, we provide the `ice_plot` and `histogram_pair` functions as well as other tools. >>> rd = mli.get_range_dict(X_train) >>> mli.ice_plot(model, X_test.sample(3), X_train.columns, rd) >>> mli.histogram_pair(df.outcome, df.feature, bins=np.linspace(0,100,11)) Please see the documentation and examples at the links below. - `Documentation `_ - `Notebook Examples and Usage `_ %prep %autosetup -n ml-insights-1.0.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-ml-insights -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.0.2-1 - Package Spec generated