%global _empty_manifest_terminate_build 0 Name: python-chart Version: 0.2.3 Release: 1 Summary: chart License: MIT URL: https://github.com/maxhumber/chart Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b3/e0/b10edf6b4ed5d4bc26b8d9b63d769b85efac89f186a733c73147561f1dd3/chart-0.2.3.tar.gz BuildArch: noarch %description

chart

MIT Travis PyPI Downloads

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: - Bar graphs - Scatter plots - Histograms - 🍑📊👏 #### Examples Bar graphs can be drawn quickly with the `bar` function: ```python from chart import bar x = [500, 200, 900, 400] y = ['marc', 'mummify', 'chart', 'sausagelink'] bar(x, y) ``` ``` marc: ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ mummify: ▇▇▇▇▇▇▇ chart: ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ sausagelink: ▇▇▇▇▇▇▇▇▇▇▇▇▇ ``` And the `bar` function can accept columns from a `pd.DataFrame`: ```python from chart import bar import pandas as pd df = pd.DataFrame({ 'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'], 'listens': [8_456_831, 18_185_245, 2_556_448] }) bar(df.listens, df.artist, width=20, label_width=11, mark='🔊') ``` ``` Tame Impala: 🔊🔊🔊🔊🔊🔊🔊🔊🔊 Childish Ga: 🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊 The Knocks: 🔊🔊🔊 ``` Histograms are just as easy: ```python from chart import histogram x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2] histogram(x) ``` ``` ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ``` And they can accept objects created by `scipy`: ```python from chart import histogram import scipy.stats as stats import numpy as np np.random.seed(14) n = stats.norm(loc=0, scale=10) histogram(n.rvs(100), bins=14, height=7, mark='🍑') ``` ``` 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 ``` Scatter plots can be drawn with a simple `scatter` call: ```python from chart import scatter x = range(0, 20) y = range(0, 20) scatter(x, y) ``` ```python • • • • • • • • • • • • • • • • • • • • ``` And at this point you gotta know it works with any `np.array`: ```python from chart import scatter import numpy as np np.random.seed(1) N = 100 x = np.random.normal(100, 50, size=N) y = x * -2 + 25 + np.random.normal(0, 25, size=N) scatter(x, y, width=20, height=9, mark='^') ``` ``` ^^ ^ ^^^ ^^^^^^^ ^^^^^^ ^^^^^^^ ^^^^ ^^^^^ ^ ^^ ^ ``` In fact, all `chart` functions work with pandas, numpy, scipy and regular python objects. #### Preprocessors In order to create the simple outputs generated by `bar`, `histogram`, and `scatter` I had to create a couple of preprocessors, namely: `NumberBinarizer` and `RangeScaler`. I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use `chart` here they are for your tinkering: ```python from chart.preprocessing import NumberBinarizer nb = NumberBinarizer(bins=4) x = range(10) nb.fit(x) nb.transform(x) ``` ``` [0, 0, 0, 1, 1, 2, 2, 3, 3, 3] ``` ```python from chart.preprocessing import RangeScaler rs = RangeScaler(out_range=(0, 10), round=False) x = range(50, 59) rs.fit_transform(x) ``` ``` [0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0] ``` #### Installation ```python pip install chart ``` #### Contribute For feature requests or bug reports, please use [Github Issues](https://github.com/maxhumber/chart/issues) #### Inspiration I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of [termgraph](https://github.com/mkaz/termgraph), it didn't really fit well or integrate with my Jupyter workflow. Here's to `chart` 🥂 (still can't believe I got it on [PyPI](https://pypi.org/project/chart/)) %package -n python3-chart Summary: chart Provides: python-chart BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-chart

chart

MIT Travis PyPI Downloads

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: - Bar graphs - Scatter plots - Histograms - 🍑📊👏 #### Examples Bar graphs can be drawn quickly with the `bar` function: ```python from chart import bar x = [500, 200, 900, 400] y = ['marc', 'mummify', 'chart', 'sausagelink'] bar(x, y) ``` ``` marc: ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ mummify: ▇▇▇▇▇▇▇ chart: ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ sausagelink: ▇▇▇▇▇▇▇▇▇▇▇▇▇ ``` And the `bar` function can accept columns from a `pd.DataFrame`: ```python from chart import bar import pandas as pd df = pd.DataFrame({ 'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'], 'listens': [8_456_831, 18_185_245, 2_556_448] }) bar(df.listens, df.artist, width=20, label_width=11, mark='🔊') ``` ``` Tame Impala: 🔊🔊🔊🔊🔊🔊🔊🔊🔊 Childish Ga: 🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊 The Knocks: 🔊🔊🔊 ``` Histograms are just as easy: ```python from chart import histogram x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2] histogram(x) ``` ``` ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ``` And they can accept objects created by `scipy`: ```python from chart import histogram import scipy.stats as stats import numpy as np np.random.seed(14) n = stats.norm(loc=0, scale=10) histogram(n.rvs(100), bins=14, height=7, mark='🍑') ``` ``` 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 ``` Scatter plots can be drawn with a simple `scatter` call: ```python from chart import scatter x = range(0, 20) y = range(0, 20) scatter(x, y) ``` ```python • • • • • • • • • • • • • • • • • • • • ``` And at this point you gotta know it works with any `np.array`: ```python from chart import scatter import numpy as np np.random.seed(1) N = 100 x = np.random.normal(100, 50, size=N) y = x * -2 + 25 + np.random.normal(0, 25, size=N) scatter(x, y, width=20, height=9, mark='^') ``` ``` ^^ ^ ^^^ ^^^^^^^ ^^^^^^ ^^^^^^^ ^^^^ ^^^^^ ^ ^^ ^ ``` In fact, all `chart` functions work with pandas, numpy, scipy and regular python objects. #### Preprocessors In order to create the simple outputs generated by `bar`, `histogram`, and `scatter` I had to create a couple of preprocessors, namely: `NumberBinarizer` and `RangeScaler`. I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use `chart` here they are for your tinkering: ```python from chart.preprocessing import NumberBinarizer nb = NumberBinarizer(bins=4) x = range(10) nb.fit(x) nb.transform(x) ``` ``` [0, 0, 0, 1, 1, 2, 2, 3, 3, 3] ``` ```python from chart.preprocessing import RangeScaler rs = RangeScaler(out_range=(0, 10), round=False) x = range(50, 59) rs.fit_transform(x) ``` ``` [0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0] ``` #### Installation ```python pip install chart ``` #### Contribute For feature requests or bug reports, please use [Github Issues](https://github.com/maxhumber/chart/issues) #### Inspiration I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of [termgraph](https://github.com/mkaz/termgraph), it didn't really fit well or integrate with my Jupyter workflow. Here's to `chart` 🥂 (still can't believe I got it on [PyPI](https://pypi.org/project/chart/)) %package help Summary: Development documents and examples for chart Provides: python3-chart-doc %description help

chart

MIT Travis PyPI Downloads

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: - Bar graphs - Scatter plots - Histograms - 🍑📊👏 #### Examples Bar graphs can be drawn quickly with the `bar` function: ```python from chart import bar x = [500, 200, 900, 400] y = ['marc', 'mummify', 'chart', 'sausagelink'] bar(x, y) ``` ``` marc: ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ mummify: ▇▇▇▇▇▇▇ chart: ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ sausagelink: ▇▇▇▇▇▇▇▇▇▇▇▇▇ ``` And the `bar` function can accept columns from a `pd.DataFrame`: ```python from chart import bar import pandas as pd df = pd.DataFrame({ 'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'], 'listens': [8_456_831, 18_185_245, 2_556_448] }) bar(df.listens, df.artist, width=20, label_width=11, mark='🔊') ``` ``` Tame Impala: 🔊🔊🔊🔊🔊🔊🔊🔊🔊 Childish Ga: 🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊🔊 The Knocks: 🔊🔊🔊 ``` Histograms are just as easy: ```python from chart import histogram x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2] histogram(x) ``` ``` ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ▇ ``` And they can accept objects created by `scipy`: ```python from chart import histogram import scipy.stats as stats import numpy as np np.random.seed(14) n = stats.norm(loc=0, scale=10) histogram(n.rvs(100), bins=14, height=7, mark='🍑') ``` ``` 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 🍑 ``` Scatter plots can be drawn with a simple `scatter` call: ```python from chart import scatter x = range(0, 20) y = range(0, 20) scatter(x, y) ``` ```python • • • • • • • • • • • • • • • • • • • • ``` And at this point you gotta know it works with any `np.array`: ```python from chart import scatter import numpy as np np.random.seed(1) N = 100 x = np.random.normal(100, 50, size=N) y = x * -2 + 25 + np.random.normal(0, 25, size=N) scatter(x, y, width=20, height=9, mark='^') ``` ``` ^^ ^ ^^^ ^^^^^^^ ^^^^^^ ^^^^^^^ ^^^^ ^^^^^ ^ ^^ ^ ``` In fact, all `chart` functions work with pandas, numpy, scipy and regular python objects. #### Preprocessors In order to create the simple outputs generated by `bar`, `histogram`, and `scatter` I had to create a couple of preprocessors, namely: `NumberBinarizer` and `RangeScaler`. I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use `chart` here they are for your tinkering: ```python from chart.preprocessing import NumberBinarizer nb = NumberBinarizer(bins=4) x = range(10) nb.fit(x) nb.transform(x) ``` ``` [0, 0, 0, 1, 1, 2, 2, 3, 3, 3] ``` ```python from chart.preprocessing import RangeScaler rs = RangeScaler(out_range=(0, 10), round=False) x = range(50, 59) rs.fit_transform(x) ``` ``` [0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0] ``` #### Installation ```python pip install chart ``` #### Contribute For feature requests or bug reports, please use [Github Issues](https://github.com/maxhumber/chart/issues) #### Inspiration I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of [termgraph](https://github.com/mkaz/termgraph), it didn't really fit well or integrate with my Jupyter workflow. Here's to `chart` 🥂 (still can't believe I got it on [PyPI](https://pypi.org/project/chart/)) %prep %autosetup -n chart-0.2.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-chart -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.2.3-1 - Package Spec generated