%global _empty_manifest_terminate_build 0 Name: python-scandeval Version: 6.3.0 Release: 1 Summary: Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks. License: MIT URL: https://scandeval.github.io Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b4/cd/d7af3e26d0b1867a3bd7f280bbc003aea8c5e60e97f9a6a9425208b6c77f/ScandEval-6.3.0.tar.gz BuildArch: noarch Requires: python3-tqdm Requires: python3-huggingface-hub Requires: python3-transformers Requires: python3-torch Requires: python3-datasets Requires: python3-click Requires: python3-termcolor Requires: python3-numpy Requires: python3-sentencepiece Requires: python3-protobuf Requires: python3-seqeval Requires: python3-pandas Requires: python3-dotenv Requires: python3-evaluate Requires: python3-sacremoses Requires: python3-jax Requires: python3-flax Requires: python3-jaxlib Requires: python3-pyinfer %description
### Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks. ______________________________________________________________________ [![PyPI Status](https://badge.fury.io/py/scandeval.svg)](https://pypi.org/project/scandeval/) [![Documentation](https://img.shields.io/badge/docs-passing-green)](https://saattrupdan.github.io/ScandEval/scandeval.html) [![License](https://img.shields.io/github/license/saattrupdan/ScandEval)](https://github.com/saattrupdan/ScandEval/blob/main/LICENSE) [![LastCommit](https://img.shields.io/github/last-commit/saattrupdan/ScandEval)](https://github.com/saattrupdan/ScandEval/commits/main) [![Code Coverage](https://img.shields.io/badge/Coverage-73%25-yellow.svg)](https://github.com/saattrupdan/ScandEval/tree/main/tests) [![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg)](https://github.com/saattrupdan/ScandEval/blob/main/CODE_OF_CONDUCT.md) ## Installation To install the package simply write the following command in your favorite terminal: ``` $ pip install scandeval ``` ## Quickstart ### Benchmarking from the Command Line The easiest way to benchmark pretrained models is via the command line interface. After having installed the package, you can benchmark your favorite model like so: ``` $ scandeval --model-id ``` Here `model_id` is the HuggingFace model ID, which can be found on the [HuggingFace Hub](https://huggingface.co/models). By default this will benchmark the model on all the datasets eligible. If you want to benchmark on a specific dataset, this can be done via the `--dataset` flag. This will for instance evaluate the model on the `AngryTweets` dataset: ``` $ scandeval --model-id --dataset angry-tweets ``` We can also separate by language. To benchmark all Danish models on all Danish datasets, say, this can be done using the `language` tag, like so: ``` $ scandeval --language da ``` Multiple models, datasets and/or languages can be specified by just attaching multiple arguments. Here is an example with two models: ``` $ scandeval --model-id --model-id --dataset angry-tweets ``` The specific model version to use can also be added after the suffix '@': ``` $ scandeval --model-id @ ``` It can be a branch name, a tag name, or a commit id. It defaults to 'main' for latest. See all the arguments and options available for the `scandeval` command by typing ``` $ scandeval --help ``` ### Benchmarking from a Script In a script, the syntax is similar to the command line interface. You simply initialise an object of the `Benchmarker` class, and call this benchmark object with your favorite models and/or datasets: ``` >>> from scandeval import Benchmarker >>> benchmark = Benchmarker() >>> benchmark('') ``` To benchmark on a specific dataset, you simply specify the second argument, shown here with the `AngryTweets` dataset again: ``` >>> benchmark('', 'angry-tweets') ``` If you want to benchmark a subset of all the models on the Hugging Face Hub, you can specify several parameters in the `Benchmarker` initializer to narrow down the list of models to the ones you care about. As a simple example, the following would benchmark all the Nynorsk models on Nynorsk datasets: ``` >>> benchmark = Benchmarker(language='nn') >>> benchmark() ``` ## Documentation See the full documentation [here](https://saattrupdan.github.io/ScandEval/scandeval.html). ## Citing ScandEval If you want to cite the framework then feel free to use this: ``` @article{nielsen2022scandeval, title={ScandEval: Evaluation of language models on mono- or multilingual Scandinavian language tasks.}, author={Nielsen, Dan Saattrup}, journal={GitHub. Note: https://github.com/saattrupdan/ScandEval}, year={2022} } ``` ## Remarks The image used in the logo has been created by the amazing [Scandinavia and the World](https://satwcomic.com/) team. Go check them out! ## Project structure ``` . ├── .flake8 ├── .github │   └── workflows │   ├── ci.yaml │   └── docs.yaml ├── .gitignore ├── .pre-commit-config.yaml ├── CHANGELOG.md ├── LICENSE ├── README.md ├── gfx │   └── scandeval.png ├── makefile ├── notebooks ├── poetry.toml ├── pyproject.toml ├── src │   ├── scandeval │   │   ├── __init__.py │   │   ├── benchmark_config_factory.py │   │   ├── benchmark_dataset.py │   │   ├── benchmarker.py │   │   ├── callbacks.py │   │   ├── cli.py │   │   ├── config.py │   │   ├── dataset_configs.py │   │   ├── dataset_factory.py │   │   ├── dataset_tasks.py │   │   ├── exceptions.py │   │   ├── hf_hub.py │   │   ├── languages.py │   │   ├── model_loading.py │   │   ├── named_entity_recognition.py │   │   ├── question_answering.py │   │   ├── question_answering_trainer.py │   │   ├── scores.py │   │   ├── sequence_classification.py │   │   ├── speed_benchmark.py │   │   ├── types.py │   │   └── utils.py │   └── scripts │   ├── create_angry_tweets.py │   ├── create_dane.py │   ├── create_mim_gold_ner.py │   ├── create_norec.py │   ├── create_norne.py │   ├── create_scala.py │   ├── create_scandiqa.py │   ├── create_suc3.py │   ├── create_swerec.py │   ├── create_wikiann_fo.py │   ├── fill_in_missing_model_metadata.py │   ├── fix_dot_env_file.py │   ├── load_ud_pos.py │   └── versioning.py └── tests ├── __init__.py ├── conftest.py ├── test_benchmark_config_factory.py ├── test_benchmark_dataset.py ├── test_benchmarker.py ├── test_callbacks.py ├── test_cli.py ├── test_config.py ├── test_dataset_configs.py ├── test_dataset_factory.py ├── test_dataset_tasks.py ├── test_exceptions.py ├── test_hf_hub.py ├── test_languages.py ├── test_model_loading.py ├── test_named_entity_recognition.py ├── test_question_answering.py ├── test_question_answering_trainer.py ├── test_scores.py ├── test_sequence_classification.py ├── test_speed_benchmark.py ├── test_types.py └── test_utils.py ``` %package -n python3-scandeval Summary: Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks. Provides: python-scandeval BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-scandeval
### Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks. ______________________________________________________________________ [![PyPI Status](https://badge.fury.io/py/scandeval.svg)](https://pypi.org/project/scandeval/) [![Documentation](https://img.shields.io/badge/docs-passing-green)](https://saattrupdan.github.io/ScandEval/scandeval.html) [![License](https://img.shields.io/github/license/saattrupdan/ScandEval)](https://github.com/saattrupdan/ScandEval/blob/main/LICENSE) [![LastCommit](https://img.shields.io/github/last-commit/saattrupdan/ScandEval)](https://github.com/saattrupdan/ScandEval/commits/main) [![Code Coverage](https://img.shields.io/badge/Coverage-73%25-yellow.svg)](https://github.com/saattrupdan/ScandEval/tree/main/tests) [![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg)](https://github.com/saattrupdan/ScandEval/blob/main/CODE_OF_CONDUCT.md) ## Installation To install the package simply write the following command in your favorite terminal: ``` $ pip install scandeval ``` ## Quickstart ### Benchmarking from the Command Line The easiest way to benchmark pretrained models is via the command line interface. After having installed the package, you can benchmark your favorite model like so: ``` $ scandeval --model-id ``` Here `model_id` is the HuggingFace model ID, which can be found on the [HuggingFace Hub](https://huggingface.co/models). By default this will benchmark the model on all the datasets eligible. If you want to benchmark on a specific dataset, this can be done via the `--dataset` flag. This will for instance evaluate the model on the `AngryTweets` dataset: ``` $ scandeval --model-id --dataset angry-tweets ``` We can also separate by language. To benchmark all Danish models on all Danish datasets, say, this can be done using the `language` tag, like so: ``` $ scandeval --language da ``` Multiple models, datasets and/or languages can be specified by just attaching multiple arguments. Here is an example with two models: ``` $ scandeval --model-id --model-id --dataset angry-tweets ``` The specific model version to use can also be added after the suffix '@': ``` $ scandeval --model-id @ ``` It can be a branch name, a tag name, or a commit id. It defaults to 'main' for latest. See all the arguments and options available for the `scandeval` command by typing ``` $ scandeval --help ``` ### Benchmarking from a Script In a script, the syntax is similar to the command line interface. You simply initialise an object of the `Benchmarker` class, and call this benchmark object with your favorite models and/or datasets: ``` >>> from scandeval import Benchmarker >>> benchmark = Benchmarker() >>> benchmark('') ``` To benchmark on a specific dataset, you simply specify the second argument, shown here with the `AngryTweets` dataset again: ``` >>> benchmark('', 'angry-tweets') ``` If you want to benchmark a subset of all the models on the Hugging Face Hub, you can specify several parameters in the `Benchmarker` initializer to narrow down the list of models to the ones you care about. As a simple example, the following would benchmark all the Nynorsk models on Nynorsk datasets: ``` >>> benchmark = Benchmarker(language='nn') >>> benchmark() ``` ## Documentation See the full documentation [here](https://saattrupdan.github.io/ScandEval/scandeval.html). ## Citing ScandEval If you want to cite the framework then feel free to use this: ``` @article{nielsen2022scandeval, title={ScandEval: Evaluation of language models on mono- or multilingual Scandinavian language tasks.}, author={Nielsen, Dan Saattrup}, journal={GitHub. Note: https://github.com/saattrupdan/ScandEval}, year={2022} } ``` ## Remarks The image used in the logo has been created by the amazing [Scandinavia and the World](https://satwcomic.com/) team. Go check them out! ## Project structure ``` . ├── .flake8 ├── .github │   └── workflows │   ├── ci.yaml │   └── docs.yaml ├── .gitignore ├── .pre-commit-config.yaml ├── CHANGELOG.md ├── LICENSE ├── README.md ├── gfx │   └── scandeval.png ├── makefile ├── notebooks ├── poetry.toml ├── pyproject.toml ├── src │   ├── scandeval │   │   ├── __init__.py │   │   ├── benchmark_config_factory.py │   │   ├── benchmark_dataset.py │   │   ├── benchmarker.py │   │   ├── callbacks.py │   │   ├── cli.py │   │   ├── config.py │   │   ├── dataset_configs.py │   │   ├── dataset_factory.py │   │   ├── dataset_tasks.py │   │   ├── exceptions.py │   │   ├── hf_hub.py │   │   ├── languages.py │   │   ├── model_loading.py │   │   ├── named_entity_recognition.py │   │   ├── question_answering.py │   │   ├── question_answering_trainer.py │   │   ├── scores.py │   │   ├── sequence_classification.py │   │   ├── speed_benchmark.py │   │   ├── types.py │   │   └── utils.py │   └── scripts │   ├── create_angry_tweets.py │   ├── create_dane.py │   ├── create_mim_gold_ner.py │   ├── create_norec.py │   ├── create_norne.py │   ├── create_scala.py │   ├── create_scandiqa.py │   ├── create_suc3.py │   ├── create_swerec.py │   ├── create_wikiann_fo.py │   ├── fill_in_missing_model_metadata.py │   ├── fix_dot_env_file.py │   ├── load_ud_pos.py │   └── versioning.py └── tests ├── __init__.py ├── conftest.py ├── test_benchmark_config_factory.py ├── test_benchmark_dataset.py ├── test_benchmarker.py ├── test_callbacks.py ├── test_cli.py ├── test_config.py ├── test_dataset_configs.py ├── test_dataset_factory.py ├── test_dataset_tasks.py ├── test_exceptions.py ├── test_hf_hub.py ├── test_languages.py ├── test_model_loading.py ├── test_named_entity_recognition.py ├── test_question_answering.py ├── test_question_answering_trainer.py ├── test_scores.py ├── test_sequence_classification.py ├── test_speed_benchmark.py ├── test_types.py └── test_utils.py ``` %package help Summary: Development documents and examples for scandeval Provides: python3-scandeval-doc %description help
### Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks. ______________________________________________________________________ [![PyPI Status](https://badge.fury.io/py/scandeval.svg)](https://pypi.org/project/scandeval/) [![Documentation](https://img.shields.io/badge/docs-passing-green)](https://saattrupdan.github.io/ScandEval/scandeval.html) [![License](https://img.shields.io/github/license/saattrupdan/ScandEval)](https://github.com/saattrupdan/ScandEval/blob/main/LICENSE) [![LastCommit](https://img.shields.io/github/last-commit/saattrupdan/ScandEval)](https://github.com/saattrupdan/ScandEval/commits/main) [![Code Coverage](https://img.shields.io/badge/Coverage-73%25-yellow.svg)](https://github.com/saattrupdan/ScandEval/tree/main/tests) [![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg)](https://github.com/saattrupdan/ScandEval/blob/main/CODE_OF_CONDUCT.md) ## Installation To install the package simply write the following command in your favorite terminal: ``` $ pip install scandeval ``` ## Quickstart ### Benchmarking from the Command Line The easiest way to benchmark pretrained models is via the command line interface. After having installed the package, you can benchmark your favorite model like so: ``` $ scandeval --model-id ``` Here `model_id` is the HuggingFace model ID, which can be found on the [HuggingFace Hub](https://huggingface.co/models). By default this will benchmark the model on all the datasets eligible. If you want to benchmark on a specific dataset, this can be done via the `--dataset` flag. This will for instance evaluate the model on the `AngryTweets` dataset: ``` $ scandeval --model-id --dataset angry-tweets ``` We can also separate by language. To benchmark all Danish models on all Danish datasets, say, this can be done using the `language` tag, like so: ``` $ scandeval --language da ``` Multiple models, datasets and/or languages can be specified by just attaching multiple arguments. Here is an example with two models: ``` $ scandeval --model-id --model-id --dataset angry-tweets ``` The specific model version to use can also be added after the suffix '@': ``` $ scandeval --model-id @ ``` It can be a branch name, a tag name, or a commit id. It defaults to 'main' for latest. See all the arguments and options available for the `scandeval` command by typing ``` $ scandeval --help ``` ### Benchmarking from a Script In a script, the syntax is similar to the command line interface. You simply initialise an object of the `Benchmarker` class, and call this benchmark object with your favorite models and/or datasets: ``` >>> from scandeval import Benchmarker >>> benchmark = Benchmarker() >>> benchmark('') ``` To benchmark on a specific dataset, you simply specify the second argument, shown here with the `AngryTweets` dataset again: ``` >>> benchmark('', 'angry-tweets') ``` If you want to benchmark a subset of all the models on the Hugging Face Hub, you can specify several parameters in the `Benchmarker` initializer to narrow down the list of models to the ones you care about. As a simple example, the following would benchmark all the Nynorsk models on Nynorsk datasets: ``` >>> benchmark = Benchmarker(language='nn') >>> benchmark() ``` ## Documentation See the full documentation [here](https://saattrupdan.github.io/ScandEval/scandeval.html). ## Citing ScandEval If you want to cite the framework then feel free to use this: ``` @article{nielsen2022scandeval, title={ScandEval: Evaluation of language models on mono- or multilingual Scandinavian language tasks.}, author={Nielsen, Dan Saattrup}, journal={GitHub. Note: https://github.com/saattrupdan/ScandEval}, year={2022} } ``` ## Remarks The image used in the logo has been created by the amazing [Scandinavia and the World](https://satwcomic.com/) team. Go check them out! ## Project structure ``` . ├── .flake8 ├── .github │   └── workflows │   ├── ci.yaml │   └── docs.yaml ├── .gitignore ├── .pre-commit-config.yaml ├── CHANGELOG.md ├── LICENSE ├── README.md ├── gfx │   └── scandeval.png ├── makefile ├── notebooks ├── poetry.toml ├── pyproject.toml ├── src │   ├── scandeval │   │   ├── __init__.py │   │   ├── benchmark_config_factory.py │   │   ├── benchmark_dataset.py │   │   ├── benchmarker.py │   │   ├── callbacks.py │   │   ├── cli.py │   │   ├── config.py │   │   ├── dataset_configs.py │   │   ├── dataset_factory.py │   │   ├── dataset_tasks.py │   │   ├── exceptions.py │   │   ├── hf_hub.py │   │   ├── languages.py │   │   ├── model_loading.py │   │   ├── named_entity_recognition.py │   │   ├── question_answering.py │   │   ├── question_answering_trainer.py │   │   ├── scores.py │   │   ├── sequence_classification.py │   │   ├── speed_benchmark.py │   │   ├── types.py │   │   └── utils.py │   └── scripts │   ├── create_angry_tweets.py │   ├── create_dane.py │   ├── create_mim_gold_ner.py │   ├── create_norec.py │   ├── create_norne.py │   ├── create_scala.py │   ├── create_scandiqa.py │   ├── create_suc3.py │   ├── create_swerec.py │   ├── create_wikiann_fo.py │   ├── fill_in_missing_model_metadata.py │   ├── fix_dot_env_file.py │   ├── load_ud_pos.py │   └── versioning.py └── tests ├── __init__.py ├── conftest.py ├── test_benchmark_config_factory.py ├── test_benchmark_dataset.py ├── test_benchmarker.py ├── test_callbacks.py ├── test_cli.py ├── test_config.py ├── test_dataset_configs.py ├── test_dataset_factory.py ├── test_dataset_tasks.py ├── test_exceptions.py ├── test_hf_hub.py ├── test_languages.py ├── test_model_loading.py ├── test_named_entity_recognition.py ├── test_question_answering.py ├── test_question_answering_trainer.py ├── test_scores.py ├── test_sequence_classification.py ├── test_speed_benchmark.py ├── test_types.py └── test_utils.py ``` %prep %autosetup -n scandeval-6.3.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-scandeval -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 6.3.0-1 - Package Spec generated