%global _empty_manifest_terminate_build 0 Name: python-klib Version: 1.0.7 Release: 1 Summary: Customized data preprocessing functions for frequent tasks. License: MIT URL: https://pypi.org/project/klib/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fb/a5/fb9d8c6629bb46881e81c7bb2db4b3af526a414bf887abe33bd5c3170c5d/klib-1.0.7.tar.gz BuildArch: noarch Requires: python3-Jinja2 Requires: python3-matplotlib Requires: python3-numpy Requires: python3-pandas Requires: python3-scipy Requires: python3-seaborn %description
[![Flake8 & PyTest](https://github.com/akanz1/klib/workflows/Flake8%20%F0%9F%90%8D%20PyTest%20%20%20%C2%B4/badge.svg)](https://github.com/akanz1/klib) [![Language](https://img.shields.io/github/languages/top/akanz1/klib)](https://pypi.org/project/klib/) [![Last Commit](https://badgen.net/github/last-commit/akanz1/klib/main)](https://github.com/akanz1/klib/commits/main) [![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=akanz1_klib&metric=alert_status)](https://sonarcloud.io/dashboard?id=akanz1_klib) [![Scrutinizer](https://scrutinizer-ci.com/g/akanz1/klib/badges/quality-score.png?b=main)](https://scrutinizer-ci.com/g/akanz1/klib/) [![codecov](https://codecov.io/gh/akanz1/klib/branch/main/graph/badge.svg)](https://codecov.io/gh/akanz1/klib) **klib** is a Python library for importing, cleaning, analyzing and preprocessing data. Explanations on key functionalities can be found on [Medium / TowardsDataScience](https://medium.com/@akanz) and in the [examples](examples) section. Additionally, there are great introductions and overviews of the functionality on [PythonBytes](https://pythonbytes.fm/episodes/show/240/this-is-github-your-pilot-speaking) or on [YouTube (Data Professor)](https://www.youtube.com/watch?v=URjJVEeZxxU). ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install klib. [![PyPI Version](https://img.shields.io/pypi/v/klib)](https://pypi.org/project/klib/) [![Downloads](https://pepy.tech/badge/klib/month)](https://pypi.org/project/klib/) ```bash pip install -U klib ``` Alternatively, to install this package with conda run: [![Conda Version](https://img.shields.io/conda/vn/conda-forge/klib)](https://anaconda.org/conda-forge/klib) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/klib.svg)](https://anaconda.org/conda-forge/klib) ```bash conda install -c conda-forge klib ``` ## Usage ```python import klib import pandas as pd df = pd.DataFrame(data) # klib.describe - functions for visualizing datasets - klib.cat_plot(df) # returns a visualization of the number and frequency of categorical features - klib.corr_mat(df) # returns a color-encoded correlation matrix - klib.corr_plot(df) # returns a color-encoded heatmap, ideal for correlations - klib.dist_plot(df) # returns a distribution plot for every numeric feature - klib.missingval_plot(df) # returns a figure containing information about missing values # klib.clean - functions for cleaning datasets - klib.data_cleaning(df) # performs datacleaning (drop duplicates & empty rows/cols, adjust dtypes,...) - klib.clean_column_names(df) # cleans and standardizes column names, also called inside data_cleaning() - klib.convert_datatypes(df) # converts existing to more efficient dtypes, also called inside data_cleaning() - klib.drop_missing(df) # drops missing values, also called in data_cleaning() - klib.mv_col_handling(df) # drops features with high ratio of missing vals based on informational content - klib.pool_duplicate_subsets(df) # pools subset of cols based on duplicates with min. loss of information ``` ## Examples Find all available examples as well as applications of the functions in **klib.clean()** with detailed descriptions here. ```python klib.missingval_plot(df) # default representation of missing values in a DataFrame, plenty of settings are available ``` ```python klib.corr_plot(df, split='pos') # displaying only positive correlations, other settings include threshold, cmap... klib.corr_plot(df, split='neg') # displaying only negative correlations ``` ```python klib.corr_plot(df, target='wine') # default representation of correlations with the feature column ``` ```python klib.dist_plot(df) # default representation of a distribution plot, other settings include fill_range, histogram, ... ``` ```python klib.cat_plot(data, top=4, bottom=4) # representation of the 4 most & least common values in each categorical column ``` Further examples, as well as applications of the functions in **klib.clean()** can be found here. ## Contributing [![Open in Visual Studio Code](https://open.vscode.dev/badges/open-in-vscode.svg)](https://open.vscode.dev/akanz1/klib) Pull requests and ideas, especially for further functions are welcome. For major changes or feedback, please open an issue first to discuss what you would like to change. ## License [MIT](https://choosealicense.com/licenses/mit/) %package -n python3-klib Summary: Customized data preprocessing functions for frequent tasks. Provides: python-klib BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-klib [![Flake8 & PyTest](https://github.com/akanz1/klib/workflows/Flake8%20%F0%9F%90%8D%20PyTest%20%20%20%C2%B4/badge.svg)](https://github.com/akanz1/klib) [![Language](https://img.shields.io/github/languages/top/akanz1/klib)](https://pypi.org/project/klib/) [![Last Commit](https://badgen.net/github/last-commit/akanz1/klib/main)](https://github.com/akanz1/klib/commits/main) [![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=akanz1_klib&metric=alert_status)](https://sonarcloud.io/dashboard?id=akanz1_klib) [![Scrutinizer](https://scrutinizer-ci.com/g/akanz1/klib/badges/quality-score.png?b=main)](https://scrutinizer-ci.com/g/akanz1/klib/) [![codecov](https://codecov.io/gh/akanz1/klib/branch/main/graph/badge.svg)](https://codecov.io/gh/akanz1/klib) **klib** is a Python library for importing, cleaning, analyzing and preprocessing data. Explanations on key functionalities can be found on [Medium / TowardsDataScience](https://medium.com/@akanz) and in the [examples](examples) section. Additionally, there are great introductions and overviews of the functionality on [PythonBytes](https://pythonbytes.fm/episodes/show/240/this-is-github-your-pilot-speaking) or on [YouTube (Data Professor)](https://www.youtube.com/watch?v=URjJVEeZxxU). ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install klib. [![PyPI Version](https://img.shields.io/pypi/v/klib)](https://pypi.org/project/klib/) [![Downloads](https://pepy.tech/badge/klib/month)](https://pypi.org/project/klib/) ```bash pip install -U klib ``` Alternatively, to install this package with conda run: [![Conda Version](https://img.shields.io/conda/vn/conda-forge/klib)](https://anaconda.org/conda-forge/klib) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/klib.svg)](https://anaconda.org/conda-forge/klib) ```bash conda install -c conda-forge klib ``` ## Usage ```python import klib import pandas as pd df = pd.DataFrame(data) # klib.describe - functions for visualizing datasets - klib.cat_plot(df) # returns a visualization of the number and frequency of categorical features - klib.corr_mat(df) # returns a color-encoded correlation matrix - klib.corr_plot(df) # returns a color-encoded heatmap, ideal for correlations - klib.dist_plot(df) # returns a distribution plot for every numeric feature - klib.missingval_plot(df) # returns a figure containing information about missing values # klib.clean - functions for cleaning datasets - klib.data_cleaning(df) # performs datacleaning (drop duplicates & empty rows/cols, adjust dtypes,...) - klib.clean_column_names(df) # cleans and standardizes column names, also called inside data_cleaning() - klib.convert_datatypes(df) # converts existing to more efficient dtypes, also called inside data_cleaning() - klib.drop_missing(df) # drops missing values, also called in data_cleaning() - klib.mv_col_handling(df) # drops features with high ratio of missing vals based on informational content - klib.pool_duplicate_subsets(df) # pools subset of cols based on duplicates with min. loss of information ``` ## Examples Find all available examples as well as applications of the functions in **klib.clean()** with detailed descriptions here. ```python klib.missingval_plot(df) # default representation of missing values in a DataFrame, plenty of settings are available ``` ```python klib.corr_plot(df, split='pos') # displaying only positive correlations, other settings include threshold, cmap... klib.corr_plot(df, split='neg') # displaying only negative correlations ``` ```python klib.corr_plot(df, target='wine') # default representation of correlations with the feature column ``` ```python klib.dist_plot(df) # default representation of a distribution plot, other settings include fill_range, histogram, ... ``` ```python klib.cat_plot(data, top=4, bottom=4) # representation of the 4 most & least common values in each categorical column ``` Further examples, as well as applications of the functions in **klib.clean()** can be found here. ## Contributing [![Open in Visual Studio Code](https://open.vscode.dev/badges/open-in-vscode.svg)](https://open.vscode.dev/akanz1/klib) Pull requests and ideas, especially for further functions are welcome. For major changes or feedback, please open an issue first to discuss what you would like to change. ## License [MIT](https://choosealicense.com/licenses/mit/) %package help Summary: Development documents and examples for klib Provides: python3-klib-doc %description help [![Flake8 & PyTest](https://github.com/akanz1/klib/workflows/Flake8%20%F0%9F%90%8D%20PyTest%20%20%20%C2%B4/badge.svg)](https://github.com/akanz1/klib) [![Language](https://img.shields.io/github/languages/top/akanz1/klib)](https://pypi.org/project/klib/) [![Last Commit](https://badgen.net/github/last-commit/akanz1/klib/main)](https://github.com/akanz1/klib/commits/main) [![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=akanz1_klib&metric=alert_status)](https://sonarcloud.io/dashboard?id=akanz1_klib) [![Scrutinizer](https://scrutinizer-ci.com/g/akanz1/klib/badges/quality-score.png?b=main)](https://scrutinizer-ci.com/g/akanz1/klib/) [![codecov](https://codecov.io/gh/akanz1/klib/branch/main/graph/badge.svg)](https://codecov.io/gh/akanz1/klib) **klib** is a Python library for importing, cleaning, analyzing and preprocessing data. Explanations on key functionalities can be found on [Medium / TowardsDataScience](https://medium.com/@akanz) and in the [examples](examples) section. Additionally, there are great introductions and overviews of the functionality on [PythonBytes](https://pythonbytes.fm/episodes/show/240/this-is-github-your-pilot-speaking) or on [YouTube (Data Professor)](https://www.youtube.com/watch?v=URjJVEeZxxU). ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install klib. [![PyPI Version](https://img.shields.io/pypi/v/klib)](https://pypi.org/project/klib/) [![Downloads](https://pepy.tech/badge/klib/month)](https://pypi.org/project/klib/) ```bash pip install -U klib ``` Alternatively, to install this package with conda run: [![Conda Version](https://img.shields.io/conda/vn/conda-forge/klib)](https://anaconda.org/conda-forge/klib) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/klib.svg)](https://anaconda.org/conda-forge/klib) ```bash conda install -c conda-forge klib ``` ## Usage ```python import klib import pandas as pd df = pd.DataFrame(data) # klib.describe - functions for visualizing datasets - klib.cat_plot(df) # returns a visualization of the number and frequency of categorical features - klib.corr_mat(df) # returns a color-encoded correlation matrix - klib.corr_plot(df) # returns a color-encoded heatmap, ideal for correlations - klib.dist_plot(df) # returns a distribution plot for every numeric feature - klib.missingval_plot(df) # returns a figure containing information about missing values # klib.clean - functions for cleaning datasets - klib.data_cleaning(df) # performs datacleaning (drop duplicates & empty rows/cols, adjust dtypes,...) - klib.clean_column_names(df) # cleans and standardizes column names, also called inside data_cleaning() - klib.convert_datatypes(df) # converts existing to more efficient dtypes, also called inside data_cleaning() - klib.drop_missing(df) # drops missing values, also called in data_cleaning() - klib.mv_col_handling(df) # drops features with high ratio of missing vals based on informational content - klib.pool_duplicate_subsets(df) # pools subset of cols based on duplicates with min. loss of information ``` ## Examples Find all available examples as well as applications of the functions in **klib.clean()** with detailed descriptions here. ```python klib.missingval_plot(df) # default representation of missing values in a DataFrame, plenty of settings are available ``` ```python klib.corr_plot(df, split='pos') # displaying only positive correlations, other settings include threshold, cmap... klib.corr_plot(df, split='neg') # displaying only negative correlations ``` ```python klib.corr_plot(df, target='wine') # default representation of correlations with the feature column ``` ```python klib.dist_plot(df) # default representation of a distribution plot, other settings include fill_range, histogram, ... ``` ```python klib.cat_plot(data, top=4, bottom=4) # representation of the 4 most & least common values in each categorical column ``` Further examples, as well as applications of the functions in **klib.clean()** can be found here. ## Contributing [![Open in Visual Studio Code](https://open.vscode.dev/badges/open-in-vscode.svg)](https://open.vscode.dev/akanz1/klib) Pull requests and ideas, especially for further functions are welcome. For major changes or feedback, please open an issue first to discuss what you would like to change. ## License [MIT](https://choosealicense.com/licenses/mit/) %prep %autosetup -n klib-1.0.7 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-klib -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot