%global _empty_manifest_terminate_build 0
Name: python-FastNLP
Version: 1.0.1
Release: 1
Summary: fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team
License: Apache License
URL: https://gitee.com/fastnlp/fastNLP
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e3/3b/95cd83996eb040b6bc09ad108fff23b615926e5bd2518a086bd7b38acaf7/FastNLP-1.0.1.tar.gz
BuildArch: noarch
%description
# fastNLP
[//]: # ([![Build Status](https://travis-ci.org/fastnlp/fastNLP.svg?branch=master)](https://travis-ci.org/fastnlp/fastNLP))
[//]: # ([![codecov](https://codecov.io/gh/fastnlp/fastNLP/branch/master/graph/badge.svg)](https://codecov.io/gh/fastnlp/fastNLP))
[//]: # ([![Pypi](https://img.shields.io/pypi/v/fastNLP.svg)](https://pypi.org/project/fastNLP))
[//]: # (![Hex.pm](https://img.shields.io/hexpm/l/plug.svg))
[//]: # ([![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest))
fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是减少用户项目中的工程型代码,例如数据处理循环、训练循环、多卡运行等。
fastNLP具有如下的特性:
- 便捷。在数据处理中可以通过apply函数避免循环、使用多进程提速等;在训练循环阶段可以很方便定制操作。
- 高效。无需改动代码,实现fp16切换、多卡、ZeRO优化等。
- 兼容。fastNLP支持多种深度学习框架作为后端。
> :warning: **为了实现对不同深度学习架构的兼容,fastNLP 1.0.0之后的版本重新设计了架构,因此与过去的fastNLP版本不完全兼容,
> 基于更早的fastNLP代码需要做一定的调整**:
## fastNLP文档
[中文文档](http://www.fastnlp.top/docs/fastNLP/master/index.html)
## 安装指南
fastNLP可以通过以下的命令进行安装
```shell
pip install fastNLP>=1.0.0alpha
```
如果需要安装更早版本的fastNLP请指定版本号,例如
```shell
pip install fastNLP==0.7.1
```
另外,请根据使用的深度学习框架,安装相应的深度学习框架。
Pytorch
下面是使用pytorch来进行文本分类的例子。需要安装torch>=1.6.0。
```python
from fastNLP.io import ChnSentiCorpLoader
from functools import partial
from fastNLP import cache_results
from fastNLP.transformers.torch import BertTokenizer
# 使用cache_results装饰器装饰函数,将prepare_data的返回结果缓存到caches/cache.pkl,再次运行时,如果
# 该文件还存在,将自动读取缓存文件,而不再次运行预处理代码。
@cache_results('caches/cache.pkl')
def prepare_data():
# 会自动下载数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
data_bundle = ChnSentiCorpLoader().load()
# 使用tokenizer对数据进行tokenize
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-bert-wwm')
tokenize = partial(tokenizer, max_length=256) # 限制数据的最大长度
data_bundle.apply_field_more(tokenize, field_name='raw_chars', num_proc=4) # 会新增"input_ids", "attention_mask"等field进入dataset中
data_bundle.apply_field(int, field_name='target', new_field_name='labels') # 将int函数应用到每个target上,并且放入新的labels field中
return data_bundle
data_bundle = prepare_data()
print(data_bundle.get_dataset('train')[:4])
# 初始化model, optimizer
from fastNLP.transformers.torch import BertForSequenceClassification
from torch import optim
model = BertForSequenceClassification.from_pretrained('hfl/chinese-bert-wwm')
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
# 准备dataloader
from fastNLP import prepare_dataloader
dls = prepare_dataloader(data_bundle, batch_size=32)
# 准备训练
from fastNLP import Trainer, Accuracy, LoadBestModelCallback, TorchWarmupCallback, Event
callbacks = [
TorchWarmupCallback(warmup=0.1, schedule='linear'), # 训练过程中调整学习率。
LoadBestModelCallback() # 将在训练结束之后,加载性能最优的model
]
# 在训练特定时机加入一些操作, 不同时机能够获取到的参数不一样,可以通过Trainer.on函数的文档查看每个时机的参数
@Trainer.on(Event.on_before_backward())
def print_loss(trainer, outputs):
if trainer.global_forward_batches % 10 == 0: # 每10个batch打印一次loss。
print(outputs.loss.item())
trainer = Trainer(model=model, train_dataloader=dls['train'], optimizers=optimizer,
device=0, evaluate_dataloaders=dls['dev'], metrics={'acc': Accuracy()},
callbacks=callbacks, monitor='acc#acc',n_epochs=5,
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
evaluate_input_mapping={'labels': 'target'}, # 在评测时,将dataloader中会输入到模型的labels重新命名为target
evaluate_output_mapping={'logits': 'pred'} # 在评测时,将model输出中的logits重新命名为pred
)
trainer.run()
# 在测试集合上进行评测
from fastNLP import Evaluator
evaluator = Evaluator(model=model, dataloaders=dls['test'], metrics={'acc': Accuracy()},
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
output_mapping={'logits': 'pred'},
input_mapping={'labels': 'target'})
evaluator.run()
```
更多内容可以参考如下的链接
### 快速入门
- [0. 10 分钟快速上手 fastNLP torch](http://www.fastnlp.top/docs/fastNLP/master/tutorials/torch/fastnlp_torch_tutorial.html)
### 详细使用教程
- [1. Trainer 和 Evaluator 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_0.html)
- [2. DataSet 和 Vocabulary 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_1.html)
- [3. DataBundle 和 Tokenizer 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_2.html)
- [4. TorchDataloader 的内部结构和基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_3.html)
- [5. fastNLP 中的预定义模型](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_4.html)
- [6. Trainer 和 Evaluator 的深入介绍](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_4.html)
- [7. fastNLP 与 paddle 或 jittor 的结合](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_5.html)
- [8. 使用 Bert + fine-tuning 完成 SST-2 分类](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_e1.html)
- [9. 使用 Bert + prompt 完成 SST-2 分类](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_e2.html)
Paddle
下面是使用paddle来进行文本分类的例子。需要安装paddle>=2.2.0以及paddlenlp>=2.3.3。
```python
from fastNLP.io import ChnSentiCorpLoader
from functools import partial
# 会自动下载数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
data_bundle = ChnSentiCorpLoader().load()
# 使用tokenizer对数据进行tokenize
from paddlenlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-bert-wwm')
tokenize = partial(tokenizer, max_length=256) # 限制一下最大长度
data_bundle.apply_field_more(tokenize, field_name='raw_chars', num_proc=4) # 会新增"input_ids", "attention_mask"等field进入dataset中
data_bundle.apply_field(int, field_name='target', new_field_name='labels') # 将int函数应用到每个target上,并且放入新的labels field中
print(data_bundle.get_dataset('train')[:4])
# 初始化 model
from paddlenlp.transformers import BertForSequenceClassification, LinearDecayWithWarmup
from paddle import optimizer, nn
class SeqClsModel(nn.Layer):
def __init__(self, model_checkpoint, num_labels):
super(SeqClsModel, self).__init__()
self.num_labels = num_labels
self.bert = BertForSequenceClassification.from_pretrained(model_checkpoint)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self.bert(input_ids, token_type_ids, position_ids, attention_mask)
return logits
def train_step(self, input_ids, labels, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self(input_ids, token_type_ids, position_ids, attention_mask)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.reshape((-1, self.num_labels)), labels.reshape((-1, )))
return {
"logits": logits,
"loss": loss,
}
def evaluate_step(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self(input_ids, token_type_ids, position_ids, attention_mask)
return {
"logits": logits,
}
model = SeqClsModel('hfl/chinese-bert-wwm', num_labels=2)
# 准备dataloader
from fastNLP import prepare_dataloader
dls = prepare_dataloader(data_bundle, batch_size=16)
# 训练过程中调整学习率。
scheduler = LinearDecayWithWarmup(2e-5, total_steps=20 * len(dls['train']), warmup=0.1)
optimizer = optimizer.AdamW(parameters=model.parameters(), learning_rate=scheduler)
# 准备训练
from fastNLP import Trainer, Accuracy, LoadBestModelCallback, Event
callbacks = [
LoadBestModelCallback() # 将在训练结束之后,加载性能最优的model
]
# 在训练特定时机加入一些操作, 不同时机能够获取到的参数不一样,可以通过Trainer.on函数的文档查看每个时机的参数
@Trainer.on(Event.on_before_backward())
def print_loss(trainer, outputs):
if trainer.global_forward_batches % 10 == 0: # 每10个batch打印一次loss。
print(outputs["loss"].item())
trainer = Trainer(model=model, train_dataloader=dls['train'], optimizers=optimizer,
device=0, evaluate_dataloaders=dls['dev'], metrics={'acc': Accuracy()},
callbacks=callbacks, monitor='acc#acc',
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
evaluate_output_mapping={'logits': 'pred'},
evaluate_input_mapping={'labels': 'target'}
)
trainer.run()
# 在测试集合上进行评测
from fastNLP import Evaluator
evaluator = Evaluator(model=model, dataloaders=dls['test'], metrics={'acc': Accuracy()},
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
output_mapping={'logits': 'pred'},
input_mapping={'labels': 'target'})
evaluator.run()
```
更多内容可以参考如下的链接
### 快速入门
- [0. 10 分钟快速上手 fastNLP paddle](http://www.fastnlp.top/docs/fastNLP/master/tutorials/torch/fastnlp_torch_tutorial.html)
### 详细使用教程
- [1. 使用 paddlenlp 和 fastNLP 实现中文文本情感分析](http://www.fastnlp.top/docs/fastNLP/master/tutorials/paddle/fastnlp_tutorial_paddle_e1.html)
- [2. 使用 paddlenlp 和 fastNLP 训练中文阅读理解任务](http://www.fastnlp.top/docs/fastNLP/master/tutorials/paddle/fastnlp_tutorial_paddle_e2.html)
oneflow
jittor
## 项目结构
fastNLP的项目结构如下:
fastNLP |
开源的自然语言处理库 |
fastNLP.core |
实现了核心功能,包括数据处理组件、训练器、测试器等 |
fastNLP.models |
实现了一些完整的神经网络模型 |
fastNLP.modules |
实现了用于搭建神经网络模型的诸多组件 |
fastNLP.embeddings |
实现了将序列index转为向量序列的功能,包括读取预训练embedding等 |
fastNLP.io |
实现了读写功能,包括数据读入与预处理,模型读写,数据与模型自动下载等 |
%package -n python3-FastNLP
Summary: fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team
Provides: python-FastNLP
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-FastNLP
# fastNLP
[//]: # ([![Build Status](https://travis-ci.org/fastnlp/fastNLP.svg?branch=master)](https://travis-ci.org/fastnlp/fastNLP))
[//]: # ([![codecov](https://codecov.io/gh/fastnlp/fastNLP/branch/master/graph/badge.svg)](https://codecov.io/gh/fastnlp/fastNLP))
[//]: # ([![Pypi](https://img.shields.io/pypi/v/fastNLP.svg)](https://pypi.org/project/fastNLP))
[//]: # (![Hex.pm](https://img.shields.io/hexpm/l/plug.svg))
[//]: # ([![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest))
fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是减少用户项目中的工程型代码,例如数据处理循环、训练循环、多卡运行等。
fastNLP具有如下的特性:
- 便捷。在数据处理中可以通过apply函数避免循环、使用多进程提速等;在训练循环阶段可以很方便定制操作。
- 高效。无需改动代码,实现fp16切换、多卡、ZeRO优化等。
- 兼容。fastNLP支持多种深度学习框架作为后端。
> :warning: **为了实现对不同深度学习架构的兼容,fastNLP 1.0.0之后的版本重新设计了架构,因此与过去的fastNLP版本不完全兼容,
> 基于更早的fastNLP代码需要做一定的调整**:
## fastNLP文档
[中文文档](http://www.fastnlp.top/docs/fastNLP/master/index.html)
## 安装指南
fastNLP可以通过以下的命令进行安装
```shell
pip install fastNLP>=1.0.0alpha
```
如果需要安装更早版本的fastNLP请指定版本号,例如
```shell
pip install fastNLP==0.7.1
```
另外,请根据使用的深度学习框架,安装相应的深度学习框架。
Pytorch
下面是使用pytorch来进行文本分类的例子。需要安装torch>=1.6.0。
```python
from fastNLP.io import ChnSentiCorpLoader
from functools import partial
from fastNLP import cache_results
from fastNLP.transformers.torch import BertTokenizer
# 使用cache_results装饰器装饰函数,将prepare_data的返回结果缓存到caches/cache.pkl,再次运行时,如果
# 该文件还存在,将自动读取缓存文件,而不再次运行预处理代码。
@cache_results('caches/cache.pkl')
def prepare_data():
# 会自动下载数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
data_bundle = ChnSentiCorpLoader().load()
# 使用tokenizer对数据进行tokenize
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-bert-wwm')
tokenize = partial(tokenizer, max_length=256) # 限制数据的最大长度
data_bundle.apply_field_more(tokenize, field_name='raw_chars', num_proc=4) # 会新增"input_ids", "attention_mask"等field进入dataset中
data_bundle.apply_field(int, field_name='target', new_field_name='labels') # 将int函数应用到每个target上,并且放入新的labels field中
return data_bundle
data_bundle = prepare_data()
print(data_bundle.get_dataset('train')[:4])
# 初始化model, optimizer
from fastNLP.transformers.torch import BertForSequenceClassification
from torch import optim
model = BertForSequenceClassification.from_pretrained('hfl/chinese-bert-wwm')
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
# 准备dataloader
from fastNLP import prepare_dataloader
dls = prepare_dataloader(data_bundle, batch_size=32)
# 准备训练
from fastNLP import Trainer, Accuracy, LoadBestModelCallback, TorchWarmupCallback, Event
callbacks = [
TorchWarmupCallback(warmup=0.1, schedule='linear'), # 训练过程中调整学习率。
LoadBestModelCallback() # 将在训练结束之后,加载性能最优的model
]
# 在训练特定时机加入一些操作, 不同时机能够获取到的参数不一样,可以通过Trainer.on函数的文档查看每个时机的参数
@Trainer.on(Event.on_before_backward())
def print_loss(trainer, outputs):
if trainer.global_forward_batches % 10 == 0: # 每10个batch打印一次loss。
print(outputs.loss.item())
trainer = Trainer(model=model, train_dataloader=dls['train'], optimizers=optimizer,
device=0, evaluate_dataloaders=dls['dev'], metrics={'acc': Accuracy()},
callbacks=callbacks, monitor='acc#acc',n_epochs=5,
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
evaluate_input_mapping={'labels': 'target'}, # 在评测时,将dataloader中会输入到模型的labels重新命名为target
evaluate_output_mapping={'logits': 'pred'} # 在评测时,将model输出中的logits重新命名为pred
)
trainer.run()
# 在测试集合上进行评测
from fastNLP import Evaluator
evaluator = Evaluator(model=model, dataloaders=dls['test'], metrics={'acc': Accuracy()},
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
output_mapping={'logits': 'pred'},
input_mapping={'labels': 'target'})
evaluator.run()
```
更多内容可以参考如下的链接
### 快速入门
- [0. 10 分钟快速上手 fastNLP torch](http://www.fastnlp.top/docs/fastNLP/master/tutorials/torch/fastnlp_torch_tutorial.html)
### 详细使用教程
- [1. Trainer 和 Evaluator 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_0.html)
- [2. DataSet 和 Vocabulary 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_1.html)
- [3. DataBundle 和 Tokenizer 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_2.html)
- [4. TorchDataloader 的内部结构和基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_3.html)
- [5. fastNLP 中的预定义模型](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_4.html)
- [6. Trainer 和 Evaluator 的深入介绍](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_4.html)
- [7. fastNLP 与 paddle 或 jittor 的结合](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_5.html)
- [8. 使用 Bert + fine-tuning 完成 SST-2 分类](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_e1.html)
- [9. 使用 Bert + prompt 完成 SST-2 分类](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_e2.html)
Paddle
下面是使用paddle来进行文本分类的例子。需要安装paddle>=2.2.0以及paddlenlp>=2.3.3。
```python
from fastNLP.io import ChnSentiCorpLoader
from functools import partial
# 会自动下载数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
data_bundle = ChnSentiCorpLoader().load()
# 使用tokenizer对数据进行tokenize
from paddlenlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-bert-wwm')
tokenize = partial(tokenizer, max_length=256) # 限制一下最大长度
data_bundle.apply_field_more(tokenize, field_name='raw_chars', num_proc=4) # 会新增"input_ids", "attention_mask"等field进入dataset中
data_bundle.apply_field(int, field_name='target', new_field_name='labels') # 将int函数应用到每个target上,并且放入新的labels field中
print(data_bundle.get_dataset('train')[:4])
# 初始化 model
from paddlenlp.transformers import BertForSequenceClassification, LinearDecayWithWarmup
from paddle import optimizer, nn
class SeqClsModel(nn.Layer):
def __init__(self, model_checkpoint, num_labels):
super(SeqClsModel, self).__init__()
self.num_labels = num_labels
self.bert = BertForSequenceClassification.from_pretrained(model_checkpoint)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self.bert(input_ids, token_type_ids, position_ids, attention_mask)
return logits
def train_step(self, input_ids, labels, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self(input_ids, token_type_ids, position_ids, attention_mask)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.reshape((-1, self.num_labels)), labels.reshape((-1, )))
return {
"logits": logits,
"loss": loss,
}
def evaluate_step(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self(input_ids, token_type_ids, position_ids, attention_mask)
return {
"logits": logits,
}
model = SeqClsModel('hfl/chinese-bert-wwm', num_labels=2)
# 准备dataloader
from fastNLP import prepare_dataloader
dls = prepare_dataloader(data_bundle, batch_size=16)
# 训练过程中调整学习率。
scheduler = LinearDecayWithWarmup(2e-5, total_steps=20 * len(dls['train']), warmup=0.1)
optimizer = optimizer.AdamW(parameters=model.parameters(), learning_rate=scheduler)
# 准备训练
from fastNLP import Trainer, Accuracy, LoadBestModelCallback, Event
callbacks = [
LoadBestModelCallback() # 将在训练结束之后,加载性能最优的model
]
# 在训练特定时机加入一些操作, 不同时机能够获取到的参数不一样,可以通过Trainer.on函数的文档查看每个时机的参数
@Trainer.on(Event.on_before_backward())
def print_loss(trainer, outputs):
if trainer.global_forward_batches % 10 == 0: # 每10个batch打印一次loss。
print(outputs["loss"].item())
trainer = Trainer(model=model, train_dataloader=dls['train'], optimizers=optimizer,
device=0, evaluate_dataloaders=dls['dev'], metrics={'acc': Accuracy()},
callbacks=callbacks, monitor='acc#acc',
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
evaluate_output_mapping={'logits': 'pred'},
evaluate_input_mapping={'labels': 'target'}
)
trainer.run()
# 在测试集合上进行评测
from fastNLP import Evaluator
evaluator = Evaluator(model=model, dataloaders=dls['test'], metrics={'acc': Accuracy()},
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
output_mapping={'logits': 'pred'},
input_mapping={'labels': 'target'})
evaluator.run()
```
更多内容可以参考如下的链接
### 快速入门
- [0. 10 分钟快速上手 fastNLP paddle](http://www.fastnlp.top/docs/fastNLP/master/tutorials/torch/fastnlp_torch_tutorial.html)
### 详细使用教程
- [1. 使用 paddlenlp 和 fastNLP 实现中文文本情感分析](http://www.fastnlp.top/docs/fastNLP/master/tutorials/paddle/fastnlp_tutorial_paddle_e1.html)
- [2. 使用 paddlenlp 和 fastNLP 训练中文阅读理解任务](http://www.fastnlp.top/docs/fastNLP/master/tutorials/paddle/fastnlp_tutorial_paddle_e2.html)
oneflow
jittor
## 项目结构
fastNLP的项目结构如下:
fastNLP |
开源的自然语言处理库 |
fastNLP.core |
实现了核心功能,包括数据处理组件、训练器、测试器等 |
fastNLP.models |
实现了一些完整的神经网络模型 |
fastNLP.modules |
实现了用于搭建神经网络模型的诸多组件 |
fastNLP.embeddings |
实现了将序列index转为向量序列的功能,包括读取预训练embedding等 |
fastNLP.io |
实现了读写功能,包括数据读入与预处理,模型读写,数据与模型自动下载等 |
%package help
Summary: Development documents and examples for FastNLP
Provides: python3-FastNLP-doc
%description help
# fastNLP
[//]: # ([![Build Status](https://travis-ci.org/fastnlp/fastNLP.svg?branch=master)](https://travis-ci.org/fastnlp/fastNLP))
[//]: # ([![codecov](https://codecov.io/gh/fastnlp/fastNLP/branch/master/graph/badge.svg)](https://codecov.io/gh/fastnlp/fastNLP))
[//]: # ([![Pypi](https://img.shields.io/pypi/v/fastNLP.svg)](https://pypi.org/project/fastNLP))
[//]: # (![Hex.pm](https://img.shields.io/hexpm/l/plug.svg))
[//]: # ([![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest))
fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是减少用户项目中的工程型代码,例如数据处理循环、训练循环、多卡运行等。
fastNLP具有如下的特性:
- 便捷。在数据处理中可以通过apply函数避免循环、使用多进程提速等;在训练循环阶段可以很方便定制操作。
- 高效。无需改动代码,实现fp16切换、多卡、ZeRO优化等。
- 兼容。fastNLP支持多种深度学习框架作为后端。
> :warning: **为了实现对不同深度学习架构的兼容,fastNLP 1.0.0之后的版本重新设计了架构,因此与过去的fastNLP版本不完全兼容,
> 基于更早的fastNLP代码需要做一定的调整**:
## fastNLP文档
[中文文档](http://www.fastnlp.top/docs/fastNLP/master/index.html)
## 安装指南
fastNLP可以通过以下的命令进行安装
```shell
pip install fastNLP>=1.0.0alpha
```
如果需要安装更早版本的fastNLP请指定版本号,例如
```shell
pip install fastNLP==0.7.1
```
另外,请根据使用的深度学习框架,安装相应的深度学习框架。
Pytorch
下面是使用pytorch来进行文本分类的例子。需要安装torch>=1.6.0。
```python
from fastNLP.io import ChnSentiCorpLoader
from functools import partial
from fastNLP import cache_results
from fastNLP.transformers.torch import BertTokenizer
# 使用cache_results装饰器装饰函数,将prepare_data的返回结果缓存到caches/cache.pkl,再次运行时,如果
# 该文件还存在,将自动读取缓存文件,而不再次运行预处理代码。
@cache_results('caches/cache.pkl')
def prepare_data():
# 会自动下载数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
data_bundle = ChnSentiCorpLoader().load()
# 使用tokenizer对数据进行tokenize
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-bert-wwm')
tokenize = partial(tokenizer, max_length=256) # 限制数据的最大长度
data_bundle.apply_field_more(tokenize, field_name='raw_chars', num_proc=4) # 会新增"input_ids", "attention_mask"等field进入dataset中
data_bundle.apply_field(int, field_name='target', new_field_name='labels') # 将int函数应用到每个target上,并且放入新的labels field中
return data_bundle
data_bundle = prepare_data()
print(data_bundle.get_dataset('train')[:4])
# 初始化model, optimizer
from fastNLP.transformers.torch import BertForSequenceClassification
from torch import optim
model = BertForSequenceClassification.from_pretrained('hfl/chinese-bert-wwm')
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
# 准备dataloader
from fastNLP import prepare_dataloader
dls = prepare_dataloader(data_bundle, batch_size=32)
# 准备训练
from fastNLP import Trainer, Accuracy, LoadBestModelCallback, TorchWarmupCallback, Event
callbacks = [
TorchWarmupCallback(warmup=0.1, schedule='linear'), # 训练过程中调整学习率。
LoadBestModelCallback() # 将在训练结束之后,加载性能最优的model
]
# 在训练特定时机加入一些操作, 不同时机能够获取到的参数不一样,可以通过Trainer.on函数的文档查看每个时机的参数
@Trainer.on(Event.on_before_backward())
def print_loss(trainer, outputs):
if trainer.global_forward_batches % 10 == 0: # 每10个batch打印一次loss。
print(outputs.loss.item())
trainer = Trainer(model=model, train_dataloader=dls['train'], optimizers=optimizer,
device=0, evaluate_dataloaders=dls['dev'], metrics={'acc': Accuracy()},
callbacks=callbacks, monitor='acc#acc',n_epochs=5,
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
evaluate_input_mapping={'labels': 'target'}, # 在评测时,将dataloader中会输入到模型的labels重新命名为target
evaluate_output_mapping={'logits': 'pred'} # 在评测时,将model输出中的logits重新命名为pred
)
trainer.run()
# 在测试集合上进行评测
from fastNLP import Evaluator
evaluator = Evaluator(model=model, dataloaders=dls['test'], metrics={'acc': Accuracy()},
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
output_mapping={'logits': 'pred'},
input_mapping={'labels': 'target'})
evaluator.run()
```
更多内容可以参考如下的链接
### 快速入门
- [0. 10 分钟快速上手 fastNLP torch](http://www.fastnlp.top/docs/fastNLP/master/tutorials/torch/fastnlp_torch_tutorial.html)
### 详细使用教程
- [1. Trainer 和 Evaluator 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_0.html)
- [2. DataSet 和 Vocabulary 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_1.html)
- [3. DataBundle 和 Tokenizer 的基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_2.html)
- [4. TorchDataloader 的内部结构和基本使用](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_3.html)
- [5. fastNLP 中的预定义模型](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_4.html)
- [6. Trainer 和 Evaluator 的深入介绍](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_4.html)
- [7. fastNLP 与 paddle 或 jittor 的结合](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_5.html)
- [8. 使用 Bert + fine-tuning 完成 SST-2 分类](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_e1.html)
- [9. 使用 Bert + prompt 完成 SST-2 分类](http://www.fastnlp.top/docs/fastNLP/master/tutorials/basic/fastnlp_tutorial_e2.html)
Paddle
下面是使用paddle来进行文本分类的例子。需要安装paddle>=2.2.0以及paddlenlp>=2.3.3。
```python
from fastNLP.io import ChnSentiCorpLoader
from functools import partial
# 会自动下载数据,并且可以通过文档看到返回的 dataset 应该是包含"raw_words"和"target"两个field的
data_bundle = ChnSentiCorpLoader().load()
# 使用tokenizer对数据进行tokenize
from paddlenlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-bert-wwm')
tokenize = partial(tokenizer, max_length=256) # 限制一下最大长度
data_bundle.apply_field_more(tokenize, field_name='raw_chars', num_proc=4) # 会新增"input_ids", "attention_mask"等field进入dataset中
data_bundle.apply_field(int, field_name='target', new_field_name='labels') # 将int函数应用到每个target上,并且放入新的labels field中
print(data_bundle.get_dataset('train')[:4])
# 初始化 model
from paddlenlp.transformers import BertForSequenceClassification, LinearDecayWithWarmup
from paddle import optimizer, nn
class SeqClsModel(nn.Layer):
def __init__(self, model_checkpoint, num_labels):
super(SeqClsModel, self).__init__()
self.num_labels = num_labels
self.bert = BertForSequenceClassification.from_pretrained(model_checkpoint)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self.bert(input_ids, token_type_ids, position_ids, attention_mask)
return logits
def train_step(self, input_ids, labels, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self(input_ids, token_type_ids, position_ids, attention_mask)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.reshape((-1, self.num_labels)), labels.reshape((-1, )))
return {
"logits": logits,
"loss": loss,
}
def evaluate_step(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
logits = self(input_ids, token_type_ids, position_ids, attention_mask)
return {
"logits": logits,
}
model = SeqClsModel('hfl/chinese-bert-wwm', num_labels=2)
# 准备dataloader
from fastNLP import prepare_dataloader
dls = prepare_dataloader(data_bundle, batch_size=16)
# 训练过程中调整学习率。
scheduler = LinearDecayWithWarmup(2e-5, total_steps=20 * len(dls['train']), warmup=0.1)
optimizer = optimizer.AdamW(parameters=model.parameters(), learning_rate=scheduler)
# 准备训练
from fastNLP import Trainer, Accuracy, LoadBestModelCallback, Event
callbacks = [
LoadBestModelCallback() # 将在训练结束之后,加载性能最优的model
]
# 在训练特定时机加入一些操作, 不同时机能够获取到的参数不一样,可以通过Trainer.on函数的文档查看每个时机的参数
@Trainer.on(Event.on_before_backward())
def print_loss(trainer, outputs):
if trainer.global_forward_batches % 10 == 0: # 每10个batch打印一次loss。
print(outputs["loss"].item())
trainer = Trainer(model=model, train_dataloader=dls['train'], optimizers=optimizer,
device=0, evaluate_dataloaders=dls['dev'], metrics={'acc': Accuracy()},
callbacks=callbacks, monitor='acc#acc',
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
evaluate_output_mapping={'logits': 'pred'},
evaluate_input_mapping={'labels': 'target'}
)
trainer.run()
# 在测试集合上进行评测
from fastNLP import Evaluator
evaluator = Evaluator(model=model, dataloaders=dls['test'], metrics={'acc': Accuracy()},
# Accuracy的update()函数需要pred,target两个参数,它们实际对应的就是以下的field。
output_mapping={'logits': 'pred'},
input_mapping={'labels': 'target'})
evaluator.run()
```
更多内容可以参考如下的链接
### 快速入门
- [0. 10 分钟快速上手 fastNLP paddle](http://www.fastnlp.top/docs/fastNLP/master/tutorials/torch/fastnlp_torch_tutorial.html)
### 详细使用教程
- [1. 使用 paddlenlp 和 fastNLP 实现中文文本情感分析](http://www.fastnlp.top/docs/fastNLP/master/tutorials/paddle/fastnlp_tutorial_paddle_e1.html)
- [2. 使用 paddlenlp 和 fastNLP 训练中文阅读理解任务](http://www.fastnlp.top/docs/fastNLP/master/tutorials/paddle/fastnlp_tutorial_paddle_e2.html)
oneflow
jittor
## 项目结构
fastNLP的项目结构如下:
fastNLP |
开源的自然语言处理库 |
fastNLP.core |
实现了核心功能,包括数据处理组件、训练器、测试器等 |
fastNLP.models |
实现了一些完整的神经网络模型 |
fastNLP.modules |
实现了用于搭建神经网络模型的诸多组件 |
fastNLP.embeddings |
实现了将序列index转为向量序列的功能,包括读取预训练embedding等 |
fastNLP.io |
实现了读写功能,包括数据读入与预处理,模型读写,数据与模型自动下载等 |
%prep
%autosetup -n FastNLP-1.0.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-FastNLP -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot - 1.0.1-1
- Package Spec generated