%global _empty_manifest_terminate_build 0 Name: python-sanpy Version: 0.11.6 Release: 1 Summary: Package for Santiment API access with python License: MIT URL: https://github.com/santiment/sanpy Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ae/59/073aadc1791953312c1a383261a3c5d219bf901db0c567529976fdfdf7b2/sanpy-0.11.6.tar.gz BuildArch: noarch Requires: python3-pandas Requires: python3-requests Requires: python3-iso8601 Requires: python3-setuptools Requires: python3-numpy Requires: python3-matplotlib Requires: python3-scipy Requires: python3-mlfinlab %description [![PyPI version](https://badge.fury.io/py/sanpy.svg)](https://badge.fury.io/py/sanpy) Python client for cryptocurrency data from [Santiment API](https://api.santiment.net/). This library provides utilities for accessing the GraphQL Santiment API endpoint and convert the result to pandas dataframe. More documentation regarding the API and definitions of metrics can be found on [Santiment Academy]() # Table of contents - [sanpy](#sanpy) - [Table of contents](#table-of-contents) - [Installation](#installation) - [Upgrade to latest version](#upgrade-to-latest-version) - [Install extra packages](#install-extra-packages) - [Restricted metrics](#restricted-metrics) - [Configuration](#configuration) - [Read the API key from the environment](#read-the-api-key-from-the-environment) - [Manually configure an API key](#manually-configure-an-api-key) - [How to obtain an API key](#how-to-obtain-an-api-key) - [Getting the data](#getting-the-data) - [Using the provided functions](#using-the-provided-functions) - [Execute an arbitrary GraphQL request](#execute-an-arbitrary-graphql-request) - [Execute SQL queries and get the result](#execute-sql-queries-and-get-the-result) - [Available metrics](#available-metrics) - [Available Metrics for Slug](#available-metrics-for-slug) - [Fetch timeseries metric](#fetch-timeseries-metric) - [Fetching metadata for a metric](#fetching-metadata-for-a-metric) - [Batching multiple queries](#batching-multiple-queries) - [Rate Limit Tools](#rate-limit-tools) - [Metric Complexity](#metric-complexity) - [Include Incomplete Data Flag](#include-incomplete-data-flag) - [Metric/Asset pair available cince](#metricasset-pair-available-cince) - [Transform the result](#transform-the-result) - [Available projects](#available-projects) - [Non-standard metrics](#non-standard-metrics) - [Other Price metrics](#other-price-metrics) - [Marketcap, Price USD, Price BTC and Trading Volume](#marketcap-price-usd-price-btc-and-trading-volume) - [Open, High, Close, Low Prices, Volume, Marketcap](#open-high-close-low-prices-volume-marketcap) - [Mining Pools Distribution](#mining-pools-distribution) - [Historical Balance](#historical-balance) - [Ethereum Top Transactions](#ethereum-top-transactions) - [Ethereum Spent Over Time](#ethereum-spent-over-time) - [Token Top Transactions](#token-top-transactions) - [Top Transfers](#top-transfers) - [Emerging Trends](#emerging-trends) - [Top Social Gainers Losers](#top-social-gainers-losers) - [Extras](#extras) - [Development](#development) - [Running tests](#running-tests) - [Running integration tests](#running-integration-tests) ## Installation To install the latest [sanpy from PyPI](https://pypi.org/project/sanpy/): ```bash pip install sanpy ``` ## Upgrade to latest version ```bash pip install --upgrade sanpy ``` ## Install extra packages There are few scripts under [extras](/san/extras) directory related to backtesting and event studies. To install their dependencies use: ```bash pip install sanpy[extras] ``` ## Restricted metrics In order to access real-time data or historical data for some of the metrics, you'll need to set the [API key](#configuration), generated from an account with a paid API plan. ## Configuration You can provide an API key which gives access to the restricted metrics in two different ways: ### Read the API key from the environment During loading of the `san` module, if the `SANPY_APIKEY` exists, its content is read and set as the API key. ```shell export SANPY_APIKEY="my_apikey" ``` ```python import san >>> san.ApiConfig.api_key 'my_apikey' ``` ### Manually configure an API key ```python import san san.ApiConfig.api_key = "my_apikey" ``` ### How to obtain an API key To obtain an API key you should [log in to sanbase](https://app.santiment.net/login) and go to the `Account` page - [https://app.santiment.net/account](https://app.santiment.net/account). There is an `API Keys` section and a `Generate new api key` button. ## Getting the data ### Using the provided functions The library provides the `get` and `get_many` functions that are used to fetch data. `get` is used to fetch timeseries data for a single metric/asset pair. `get_many` is used to fetch timeseries data for a single metric, but many assets. This is counted as 1 API call. The first argument to the functions is the metric name. The rest of the parameters are:: - `slug` - (for `get`) The project identificator, as seen in [the Available projects section](#available-projects) - `slugs` - (for `get_many`) A list of projects' identificators, as seen in [the Available projects section](#available-projects) - `selector` - Allow for more flexible selection of the target. Some metrics are computed on blockchain addresses, for others you can provide a list of slugs, labels, amount of top holders. etc. - `from_date` - A date or datetime in ISO8601 format specifying the start of the queried period. Defaults to `datetime.utcnow() - 365 days` - `to_date` - A date or datetime in ISO86091 format specifying the end of the queried period. Defaults to `datetime.utcnow()` - `interval` - The interval between the data points in the timeseries. Defaults to `'1d'` It is represented in two different ways: - a fixed range: an integer followed by one of: `s`, `m`, `h`, `d` or `w` - a function, providing some semantic or a dynamic range: `toStartOfMonth`, `toStartOfDay`, `toStartOfWeek`, `toMonday`.. The returned result for time-series data is transformed into `pandas DataFrame` and is indexed by `datetime`. For `get`, the value column is named `value`. For `get_many`, there is one column per asset queried. The asset slugs are used for the column names. For backwards compatibility, fetching the metric by providing `"metric/slug"` as the first instead of using a separate `'slug'`/`'selector'` continues to work, but it is not the recommended approach. For non-metric related data like getting the list of available assets, the data is fetched by providing a string in the format `query/argument` and additional parameters. The examples below contain some of the described scenarios. Fetch metric by providing `metric` as first argument and `slug` as named parameter: ```python import san san.get( "price_usd", slug="bitcoin", from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 47686.811509 2022-01-02 00:00:00+00:00 47345.220564 2022-01-03 00:00:00+00:00 46458.116959 2022-01-04 00:00:00+00:00 45928.661063 2022-01-05 00:00:00+00:00 43569.003348 ``` Fetch prices for multiple assets: ```python import san san.get_many( "price_usd", slugs=["bitcoin", "ethereum", "tether"], from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime bitcoin ethereum tether 2022-01-01 00:00:00+00:00 47686.811509 3769.696916 1.000500 2022-01-02 00:00:00+00:00 47345.220564 3829.565045 1.000460 2022-01-03 00:00:00+00:00 46458.116959 3761.380274 1.000165 2022-01-04 00:00:00+00:00 45928.661063 3795.890130 1.000208 2022-01-05 00:00:00+00:00 43569.003348 3550.386882 1.000122 ``` Fetch development activity of a specific Github organization: ```python import san san.get( "dev_activity", selector={"organization": "google"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 176.0 2022-01-02 00:00:00+00:00 129.0 2022-01-03 00:00:00+00:00 562.0 2022-01-04 00:00:00+00:00 1381.0 2022-01-05 00:00:00+00:00 1334.0 ``` Fetch a metric for a contract address, not a slug: ```python import san san.get( "contract_transactions_count", selector={"contractAddress": "0x00000000219ab540356cBB839Cbe05303d7705Fa"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 90.0 2022-01-02 00:00:00+00:00 339.0 2022-01-03 00:00:00+00:00 486.0 2022-01-04 00:00:00+00:00 314.0 2022-01-05 00:00:00+00:00 328.0 ``` Fetch top holders metric and specify the number of top holders to be counted: ```python import san san.get( "amount_in_top_holders", selector={"slug": "santiment", "holdersCount": 10}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 7.391186e+07 2022-01-02 00:00:00+00:00 7.391438e+07 2022-01-03 00:00:00+00:00 7.391984e+07 2022-01-04 00:00:00+00:00 7.391984e+07 2022-01-05 00:00:00+00:00 7.391984e+07 ``` Fetch trade volume of a given DEX for a given slug ```python import san # This requires Santiment API PRO apikey configured san.get( "total_trade_volume_by_dex", selector={"slug": "ethereum", "label": "decentralized_exchange", "owner": "UniswapV2"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 96882.176846 2022-01-02 00:00:00+00:00 85184.970249 2022-01-03 00:00:00+00:00 107489.846163 2022-01-04 00:00:00+00:00 105204.677503 2022-01-05 00:00:00+00:00 174178.848916 ``` Fetch metric by providing `metric/slug` as first argument and no `slug` as named parameter: ```python import san san.get( "daily_active_addresses/bitcoin", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` ``` datetime value 2018-06-01 00:00:00+00:00 692508.0 2018-06-02 00:00:00+00:00 521887.0 2018-06-03 00:00:00+00:00 531464.0 2018-06-04 00:00:00+00:00 702902.0 2018-06-05 00:00:00+00:00 655695.0 ``` Fetch non-timeseries data: ```python import san san.get("projects/all") ``` ``` name slug ticker totalSupply 0 0chain 0chain ZCN 400000000 1 0x 0x ZRX 1000000000 2 0xBitcoin 0xbtc 0xBTC 20999984 ``` ### Execute an arbitrary GraphQL request Some of the available queries in the [Santiment API](https://api.santiment.net) do not have a dedicated sanpy function. Alternatively, if the returned format needs to be parsed differently, this approach can be used, too. They can be fetched by providing the raw GraphQL query. Fetching data for many slugs at the same time. Note that this is also available as `san.get_many` ```python import san import pandas as pd result = san.graphql.execute_gql(""" { getMetric(metric: "price_usd") { timeseriesDataPerSlug( selector: {slugs: ["ethereum", "bitcoin"]} from: "2022-05-05T00:00:00Z" to: "2022-05-08T00:00:00Z" interval: "1d") { datetime data{ value slug } } } } """) data = result['getMetric']['timeseriesDataPerSlug'] rows = [] for datetime_point in data: row = {'datetime': datetime_point['datetime']} for slug_data in datetime_point['data']: row[slug_data['slug']] = slug_data['value'] rows.append(row) df = pd.DataFrame(rows) df.set_index('datetime', inplace=True) ``` ``` datetime bitcoin ethereum 2022-05-05T00:00:00Z 36575.142133 2749.213042 2022-05-06T00:00:00Z 36040.922350 2694.979684 2022-05-07T00:00:00Z 35501.954144 2636.092958 ``` Fetching a specific set of fields for a project: ```python import san import pandas as pd result = san.graphql.execute_gql("""{ projectBySlug(slug: "santiment") { slug name ticker infrastructure mainContractAddress twitterLink } }""") pd.DataFrame(result["projectBySlug"], index=[0]) ``` ``` infrastructure mainContractAddress name slug ticker twitterLink 0 ETH 0x7c5a0ce9267ed19b22f8cae653f198e3e8daf098 Santiment santiment SAN https://twitter.com/santimentfeed ``` ## Execute SQL queries and get the result One of the Santiment products is [Santiment Queries](https://academy.santiment.net/santiment-queries/). It allows you to execute SQL queries on a database hosted by Santiment. Explore the documentation in order to get familiar with the available data and how to write SQL queries. In order to execute a query you need to provide your API key. Executing a query and getting the result as a pandas DataFrame: ```python import san san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5") ``` ``` metric_id asset_id dt value computed_at 0 10 1369 2015-07-17T00:00:00Z 0.0 2020-10-21T08:48:42Z 1 10 1369 2015-07-18T00:00:00Z 0.0 2020-10-21T08:48:42Z 2 10 1369 2015-07-19T00:00:00Z 0.0 2020-10-21T08:48:42Z 3 10 1369 2015-07-20T00:00:00Z 0.0 2020-10-21T08:48:42Z 4 10 1369 2015-07-21T00:00:00Z 0.0 2020-10-21T08:48:42Z ``` In order to change the index to one of the columns, provide the `set_index` parameter: ```python import san san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5", set_index="dt") ``` ``` dt metric_id asset_id value computed_at 2015-07-17T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-18T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-19T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-20T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-21T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z ``` The queries can be parametrized. In the query the parameters are named parameters, surrounded by two curly brackets `{{key}}`. The parameters is a dictionary. The query can be a multiline string: ```python san.execute_sql(query=""" SELECT get_metric_name(metric_id) AS metric, get_asset_name(asset_id) AS asset, dt, argMax(value, computed_at) FROM daily_metrics_v2 WHERE asset_id = get_asset_id({{slug}}) AND metric_id = get_metric_id({{metric}}) AND dt >= now() - INTERVAL {{last_n_days}} DAY GROUP BY dt, metric_id, asset_id ORDER BY dt ASC """, parameters={'slug': 'bitcoin', 'metric': 'daily_active_addresses', 'last_n_days': 7}, set_index="dt") ``` ``` dt metric asset value 2023-03-22T00:00:00Z daily_active_addresses bitcoin 941446.0 2023-03-23T00:00:00Z daily_active_addresses bitcoin 913215.0 2023-03-24T00:00:00Z daily_active_addresses bitcoin 884271.0 2023-03-25T00:00:00Z daily_active_addresses bitcoin 906851.0 2023-03-26T00:00:00Z daily_active_addresses bitcoin 835596.0 2023-03-27T00:00:00Z daily_active_addresses bitcoin 1052637.0 2023-03-28T00:00:00Z daily_active_addresses bitcoin 311566.0 ``` ## Available metrics Getting all of the metrics as a list is done using the following code: ```python san.available_metrics() ``` ## Available Metrics for Slug Getting all of the metrics for a given slug is achieved with the following code: ```python san.available_metrics_for_slug("santiment") ``` ## Fetch timeseries metric ```python import san san.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` Using the defaults params (last 1 year of data with 1 day interval): ```python san.get("daily_active_addresses", slug="santiment") san.get("price_usd", slug="santiment") ``` ## Fetching metadata for a metric Fetching the metadata for an on-chain metric. ```python san.metadata( "nvt", arr=["availableSlugs", "defaultAggregation", "humanReadableName", "isAccessible", "isRestricted", "restrictedFrom", "restrictedTo"] ) ``` Example result: ```python {"availableSlugs": ["0chain", "0x", "0xbtc", "0xcert", "1sg", ...], "defaultAggregation": "AVG", "humanReadableName": "NVT (Using Circulation)", "isAccessible": True, "isRestricted": True, "restrictedFrom": "2020-03-21T08:44:14Z", "restrictedTo": "2020-06-17T08:44:14Z"} ``` - `availableSlugs` - A list of all slugs available for this metric. - `defaultAggregation` - If big interval are queried, all values that fall into this interval will be aggregated with this aggregation. - `humanReadableName` - A name of the metric suitable for showing to users. - `isAccessible` - `True` if the metric is accessible. If API key is configured, c hecks the API plan subscriptions. `False` if the metric is not accessible. For example `circulation_1d` requires `PRO` plan subscription in order to be accessible at all. - `isRestricted` - `True` if time restrictions apply to the metric and your current plan (`Free` if no API key is configured). Check `restrictedFrom` and `restrictedTo`. - `restrictedFrom` - The first datetime available of that metric for your current plan. - `restrictedTo` - The last datetime available of that metric and your current plan. ## Batching multiple queries Multiple queries can be executed in a batch to speed up the performance. There are two batch classes provided - `Batch` and `AsyncBatch`. > Note: Batching improves the performance and the developer experience, but every > query put inside the batch is still counted as one separate API call. > To fetch a metric for multiple assets at a time take a look at `san.get_many` - `AsyncBatch` is the recommended batch class. It executes all the queries in separate HTTP requests. The benefit of using `AsyncBatch` over looping and executing every API call is that the queries can be executed concurrently. Putting multiple API calls in separate HTTP calls also allows to fetch more data, otherwise you might run into [Complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) issues. The concurrency is controlled by the `max_workers` optional parameter to the `execute` function. By default the `max_workers` value is 10. It also supports `get_many` function to fetch data for many assets. - `Batch` combines all the provided queries in a single GraphQL document and executes them in a single HTTP request. This batching technique should be used when lightweight queries that don't fetch a lot of data are used. The reason is that the [complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) of each query is accumulated and the batch can be rejected. Note: If you have been using `Batch()` and want to switch to the newer `AsyncBatch()` you only need to change the batch initialization. The functions for adding queries and executing the batch, as well as the format of the response, are the same. ```python from san import Batch batch = Batch() batch.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) batch.get( "transaction_volume", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) [daa, trx_volume] = batch.execute() ``` ```python from san import AsyncBatch batch = AsyncBatch() batch.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) batch.get_many( "daily_active_addresses", slugs=["bitcoin", "ethereum"], from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) [daa, daa_many] = batch.execute(max_workers=10) ``` ## Rate Limit Tools There are two functions, which can help you in handling the rate limits: * ``is_rate_limit_exception`` - Returns whether the exception caught is because of rate limitation * ``rate_limit_time_left`` - Returns the time left before the rate limit expires * ``api_calls_made`` - Returns the API calls for each day in which it was used * ``api_calls_remaining`` - Returns the API calls remaining for the month, hour and minute Example: ```python import time import san try: san.get( "price_usd", slug="santiment", from_date="utc_now-30d", to_date="utc_now", interval="1d" ) except Exception as e: if san.is_rate_limit_exception(e): rate_limit_seconds = san.rate_limit_time_left(e) print(f"Will sleep for {rate_limit_seconds}") time.sleep(rate_limit_seconds) calls_by_day = san.api_calls_made() calls_remaining = san.api_calls_remaining() ``` ## Metric Complexity Fetch the complexity of a metric. The complexity depends on the from/to/interval parameters, as well as the metric and the subscription plan. A request might have a maximum complexity of 50000. If a request has a higher complexity there are a few ways to solve the issue: - Break down the request into multiple requests with smaller from-to ranges. - Upgrade to a higher subscription plan. More about the complexity can be found on [Santiment Academy]() ```python san.metric_complexity( metric="price_usd", from_date="2020-01-01", to_date="2020-02-20", interval="1d" ) ``` ## Include Incomplete Data Flag Daily metrics have one value per day. For the current day, the latest computed value will not include a full day of data. For example, computing `daily_active_addresses` at 08:00 includes data for one third of the day. To reduce confusion, the current day value for metrics that have this behaviour is excluded. To force fetching the current day value, the `includeIncompleteData` flag must be used. ```python san.get( "daily_active_addresses/bitcoin", from_date="utc_now-3d", to_date="utc_now", interval="1d", include_incomplete_data=True ) ``` ## Metric/Asset pair available cince Fetch the first datetime for which a metric is available for a given slug. ```python san.available_metric_for_slug_since(metric="daily_active_addresses", slug="santiment") ``` ## Transform the result Example usage: ```python san.get( "price_usd", slug="santiment", from_date="2020-06-01", to_date="2021-06-05", interval="1d", transform={"type": "moving_average", "moving_average_base": 100}, aggregation="LAST" ) ``` Where the parameters, that are not mentioned, are optional: `transform` - Apply a transformation on the data. The supported transformations are: - "moving_average" - Replace every value Vi with the average of the last "moving_average_base" values. - "consecutive_differences" - Replace every value Vi with the value Vi - Vi-1 where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value. - "percent_change" - Replace every value Vi with the percent change of Vi-1 and Vi ( (Vi / Vi-1 - 1) * 100) where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value. `aggregation` - the aggregation which is used for the query results. ## Available projects Returns a DataFrame with all the projects available in the Santiment API. Not all metrics will be available for each of the projects. `slug` is the unique identifier of a project, used in the metrics fetching. ```python san.get("projects/all") ``` Example result: ``` name slug ticker totalSupply 0 0chain 0chain ZCN 400000000 1 0x 0x ZRX 1000000000 2 0xBitcoin 0xbtc 0xBTC 20999984 3 0xcert Protocol 0xcert ZXC 500000000 4 1World 1world 1WO 37219453 5 AB-Chain RTB ab-chain-rtb RTB 27857813 6 Abulaba abulaba AAA 397000000 7 AC3 ac3 AC3 80235326.0 ``` ## Non-standard metrics Here is a list of metrics that are not part of the returned list of metrics found above. This is due to having different response format and semantics. ### Other Price metrics #### Marketcap, Price USD, Price BTC and Trading Volume ```python san.get( "prices", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` #### Open, High, Close, Low Prices, Volume, Marketcap Note: this query cannot be batched! ```python san.get( "ohlcv", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` Example result: ```python datetime openPriceUsd closePriceUsd highPriceUsd lowPriceUsd volume marketcap 2018-06-01 00:00:00+00:00 1.24380 1.27668 1.26599 1.19099 852857 7.736268e+07 2018-06-02 00:00:00+00:00 1.26136 1.30779 1.27612 1.20958 1242520 7.864724e+07 2018-06-03 00:00:00+00:00 1.28270 1.28357 1.24625 1.21872 1032910 7.844339e+07 2018-06-04 00:00:00+00:00 1.23276 1.24910 1.18528 1.18010 617451 7.604326e+07 ``` ### Mining Pools Distribution Returns distribution of miners between mining pools. What part of the miners are using top3, top10 and all the other pools. Currently only ETH is supported. [Premium metric](#premium-metrics) ```python san.get( "mining_pools_distribution", slug="ethereum", from_date="2019-06-01", to_date="2019-06-05", interval="1d" ) ``` Example result: ``` datetime other top10 top3 2019-06-01 00:00:00+00:00 0.129237 0.249906 0.620857 2019-06-02 00:00:00+00:00 0.127432 0.251903 0.620666 2019-06-03 00:00:00+00:00 0.122058 0.249603 0.628339 2019-06-04 00:00:00+00:00 0.127726 0.254982 0.617293 2019-06-05 00:00:00+00:00 0.120436 0.265842 0.613722 ``` ### Historical Balance Historical balance for erc20 token or eth address. Returns the historical balance for a given address in the given interval. ```python san.get( "historical_balance", slug="santiment", address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2", from_date="2019-04-18", to_date="2019-04-23", interval="1d" ) ``` Example result: ``` datetime balance 2019-04-18 00:00:00+00:00 382338.33 2019-04-19 00:00:00+00:00 382338.33 2019-04-20 00:00:00+00:00 382338.33 2019-04-21 00:00:00+00:00 215664.33 2019-04-22 00:00:00+00:00 215664.33 ``` ### Ethereum Top Transactions Top ETH transactions for project's team wallets. Available transaction types: - ALL - IN - OUT ```python san.get( "eth_top_transactions", slug="santiment", from_date="2019-04-18", to_date="2019-04-30", limit=5, transaction_type="ALL" ) ``` Example result: **The result is shortened for convenience** ``` datetime fromAddress fromAddressInExchange toAddress toAddressInExchange trxHash trxValue 2019-04-29 21:33:31+00:00 0xe76fe52a251c8f... False 0x45d6275d9496b... False 0x776cd57382456a... 100.00 2019-04-29 21:21:18+00:00 0xe76fe52a251c8f... False 0x468bdccdc334f... False 0x848414fb5c382f... 40.95 2019-04-19 14:14:52+00:00 0x1f3df0b8390bb8... False 0xd69bc0585e05e... False 0x590512e1f1fbcf... 19.48 2019-04-19 14:09:58+00:00 0x1f3df0b8390bb8... False 0x723fb5c14eaff... False 0x78e0720b9e72d1... 15.15 ``` ### Ethereum Spent Over Time ETH spent for each interval from the project's team wallet and time period ```python san.get( "eth_spent_over_time", slug="santiment", from_date="2019-04-18", to_date="2019-04-23", interval="1d" ) ``` Example result: ``` datetime ethSpent 2019-04-18 00:00:00+00:00 0.000000 2019-04-19 00:00:00+00:00 34.630284 2019-04-20 00:00:00+00:00 0.000000 2019-04-21 00:00:00+00:00 0.000158 2019-04-22 00:00:00+00:00 0.000000 ``` ### Token Top Transactions Top transactions for the token of a given project ```python san.get( "token_top_transactions", slug="santiment", from_date="2019-04-18", to_date="2019-04-30", limit=5 ) ``` Example result: **The result is shortened for convenience** ``` datetime fromAddress fromAddressInExchange toAddress toAddressInExchange trxHash trxValue 2019-04-21 13:51:59+00:00 0x1f3df0b8390bb8... False 0x5eaae5e949952... False 0xdbced935b09dd0... 166674.00000 2019-04-28 07:43:38+00:00 0x0a920bfdf7f977... False 0x868074aab18ea... False 0x5f2214d34bcdc3... 33181.82279 2019-04-28 07:53:32+00:00 0x868074aab18ea3... False 0x876eabf441b2e... True 0x90bd286da38a2b... 33181.82279 2019-04-26 14:38:45+00:00 0x876eabf441b2ee... True 0x76af586d041d6... False 0xe45b86f415e930... 28999.64023 2019-04-30 15:17:28+00:00 0x876eabf441b2ee... True 0x1f4a90043cf2d... False 0xc85892b9ef8c64... 20544.42975 ``` ### Top Transfers Top transfers for the token of a given project, ``address`` and ``transaction_type`` arguments can be added as well, in the form of a key-value pair. The ``transaction_type`` parameter can have one of these three values: ``ALL``, ``OUT``, ``IN``. ```python san.get( "top_transfers", slug="santiment", from_date="utc_now-30d", to_date="utc_now", ) ``` **The result is shortened for convenience** Example result: ``` fromAddress toAddress trxHash trxValue datetime 2021-06-17 00:16:26+00:00 0xa48df... 0x876ea... 0x62a56... 136114.069733 2021-06-17 00:10:05+00:00 0xbd3c2... 0x876ea... 0x732a5... 117339.779890 2021-06-19 21:36:03+00:00 0x59646... 0x0d45b... 0x5de31... 112336.882707 ``` ```python san.get( "top_transfers", slug="santiment", address="0x26e068650ae54b6c1b149e1b926634b07e137b9f", transaction_type="ALL", from_date="utc_now-30d", to_date="utc_now", ) ``` Example result: ``` fromAddress toAddress trxHash trxValue datetime 2021-06-13 09:14:01+00:00 0x26e06... 0xfd3d... 0x4af6... 69854.528 2021-06-13 09:13:01+00:00 0x876ea... 0x26e0... 0x18c1... 69854.528 2021-06-14 08:54:52+00:00 0x876ea... 0x26e0... 0xdceb... 59920.591 ``` ### Emerging Trends Emerging trends for a given period of time. ```python san.get( "emerging_trends", from_date="2019-07-01", to_date="2019-07-02", interval="1d", size=5 ) ``` Example result: ``` datetime score word 2019-07-01 00:00:00+00:00 375.160034 lnbc 2019-07-01 00:00:00+00:00 355.323281 dent 2019-07-01 00:00:00+00:00 268.653820 link 2019-07-01 00:00:00+00:00 231.721809 shorts 2019-07-01 00:00:00+00:00 206.812798 btt 2019-07-02 00:00:00+00:00 209.343752 bounce 2019-07-02 00:00:00+00:00 135.412811 vidt 2019-07-02 00:00:00+00:00 116.842801 bat 2019-07-02 00:00:00+00:00 98.517600 bottom 2019-07-02 00:00:00+00:00 89.309975 haiku ``` ### Top Social Gainers Losers Top social gainers/losers returns the social volume changes for crypto projects. ```python san.get( "top_social_gainers_losers", from_date="2019-07-18", to_date="2019-07-30", size=5, time_window="2d", status="ALL" ) ``` Example result: **The result is shortened for convenience** ``` datetime slug change status 2019-07-28 01:00:00+00:00 libra-credit 21.000000 GAINER 2019-07-28 01:00:00+00:00 aeon -1.000000 LOSER 2019-07-28 01:00:00+00:00 thunder-token 5.000000 NEWCOMER 2019-07-28 02:00:00+00:00 libra-credit 43.000000 GAINER 2019-07-30 07:00:00+00:00 storj 12.000000 NEWCOMER 2019-07-30 11:00:00+00:00 storj 21.000000 GAINER 2019-07-30 11:00:00+00:00 aergo -1.000000 LOSER 2019-07-30 11:00:00+00:00 litex 8.000000 NEWCOMER ``` ## Extras Take a look at the [examples](/examples/extras) folder. ## Development It is recommended to use [pipenv](https://github.com/pypa/pipenv) for managing your local environment. Setup project: ```bash pipenv install ``` Install main dependencies: ```bash pipenv run pip install -e . ``` Install extra dependencies: ```bash pipenv run pip install -e '.[extras]' ``` ## Running tests ```bash python setup.py test ``` ## Running integration tests ```bash python setup.py nosetests -a integration ``` %package -n python3-sanpy Summary: Package for Santiment API access with python Provides: python-sanpy BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-sanpy [![PyPI version](https://badge.fury.io/py/sanpy.svg)](https://badge.fury.io/py/sanpy) Python client for cryptocurrency data from [Santiment API](https://api.santiment.net/). This library provides utilities for accessing the GraphQL Santiment API endpoint and convert the result to pandas dataframe. More documentation regarding the API and definitions of metrics can be found on [Santiment Academy]() # Table of contents - [sanpy](#sanpy) - [Table of contents](#table-of-contents) - [Installation](#installation) - [Upgrade to latest version](#upgrade-to-latest-version) - [Install extra packages](#install-extra-packages) - [Restricted metrics](#restricted-metrics) - [Configuration](#configuration) - [Read the API key from the environment](#read-the-api-key-from-the-environment) - [Manually configure an API key](#manually-configure-an-api-key) - [How to obtain an API key](#how-to-obtain-an-api-key) - [Getting the data](#getting-the-data) - [Using the provided functions](#using-the-provided-functions) - [Execute an arbitrary GraphQL request](#execute-an-arbitrary-graphql-request) - [Execute SQL queries and get the result](#execute-sql-queries-and-get-the-result) - [Available metrics](#available-metrics) - [Available Metrics for Slug](#available-metrics-for-slug) - [Fetch timeseries metric](#fetch-timeseries-metric) - [Fetching metadata for a metric](#fetching-metadata-for-a-metric) - [Batching multiple queries](#batching-multiple-queries) - [Rate Limit Tools](#rate-limit-tools) - [Metric Complexity](#metric-complexity) - [Include Incomplete Data Flag](#include-incomplete-data-flag) - [Metric/Asset pair available cince](#metricasset-pair-available-cince) - [Transform the result](#transform-the-result) - [Available projects](#available-projects) - [Non-standard metrics](#non-standard-metrics) - [Other Price metrics](#other-price-metrics) - [Marketcap, Price USD, Price BTC and Trading Volume](#marketcap-price-usd-price-btc-and-trading-volume) - [Open, High, Close, Low Prices, Volume, Marketcap](#open-high-close-low-prices-volume-marketcap) - [Mining Pools Distribution](#mining-pools-distribution) - [Historical Balance](#historical-balance) - [Ethereum Top Transactions](#ethereum-top-transactions) - [Ethereum Spent Over Time](#ethereum-spent-over-time) - [Token Top Transactions](#token-top-transactions) - [Top Transfers](#top-transfers) - [Emerging Trends](#emerging-trends) - [Top Social Gainers Losers](#top-social-gainers-losers) - [Extras](#extras) - [Development](#development) - [Running tests](#running-tests) - [Running integration tests](#running-integration-tests) ## Installation To install the latest [sanpy from PyPI](https://pypi.org/project/sanpy/): ```bash pip install sanpy ``` ## Upgrade to latest version ```bash pip install --upgrade sanpy ``` ## Install extra packages There are few scripts under [extras](/san/extras) directory related to backtesting and event studies. To install their dependencies use: ```bash pip install sanpy[extras] ``` ## Restricted metrics In order to access real-time data or historical data for some of the metrics, you'll need to set the [API key](#configuration), generated from an account with a paid API plan. ## Configuration You can provide an API key which gives access to the restricted metrics in two different ways: ### Read the API key from the environment During loading of the `san` module, if the `SANPY_APIKEY` exists, its content is read and set as the API key. ```shell export SANPY_APIKEY="my_apikey" ``` ```python import san >>> san.ApiConfig.api_key 'my_apikey' ``` ### Manually configure an API key ```python import san san.ApiConfig.api_key = "my_apikey" ``` ### How to obtain an API key To obtain an API key you should [log in to sanbase](https://app.santiment.net/login) and go to the `Account` page - [https://app.santiment.net/account](https://app.santiment.net/account). There is an `API Keys` section and a `Generate new api key` button. ## Getting the data ### Using the provided functions The library provides the `get` and `get_many` functions that are used to fetch data. `get` is used to fetch timeseries data for a single metric/asset pair. `get_many` is used to fetch timeseries data for a single metric, but many assets. This is counted as 1 API call. The first argument to the functions is the metric name. The rest of the parameters are:: - `slug` - (for `get`) The project identificator, as seen in [the Available projects section](#available-projects) - `slugs` - (for `get_many`) A list of projects' identificators, as seen in [the Available projects section](#available-projects) - `selector` - Allow for more flexible selection of the target. Some metrics are computed on blockchain addresses, for others you can provide a list of slugs, labels, amount of top holders. etc. - `from_date` - A date or datetime in ISO8601 format specifying the start of the queried period. Defaults to `datetime.utcnow() - 365 days` - `to_date` - A date or datetime in ISO86091 format specifying the end of the queried period. Defaults to `datetime.utcnow()` - `interval` - The interval between the data points in the timeseries. Defaults to `'1d'` It is represented in two different ways: - a fixed range: an integer followed by one of: `s`, `m`, `h`, `d` or `w` - a function, providing some semantic or a dynamic range: `toStartOfMonth`, `toStartOfDay`, `toStartOfWeek`, `toMonday`.. The returned result for time-series data is transformed into `pandas DataFrame` and is indexed by `datetime`. For `get`, the value column is named `value`. For `get_many`, there is one column per asset queried. The asset slugs are used for the column names. For backwards compatibility, fetching the metric by providing `"metric/slug"` as the first instead of using a separate `'slug'`/`'selector'` continues to work, but it is not the recommended approach. For non-metric related data like getting the list of available assets, the data is fetched by providing a string in the format `query/argument` and additional parameters. The examples below contain some of the described scenarios. Fetch metric by providing `metric` as first argument and `slug` as named parameter: ```python import san san.get( "price_usd", slug="bitcoin", from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 47686.811509 2022-01-02 00:00:00+00:00 47345.220564 2022-01-03 00:00:00+00:00 46458.116959 2022-01-04 00:00:00+00:00 45928.661063 2022-01-05 00:00:00+00:00 43569.003348 ``` Fetch prices for multiple assets: ```python import san san.get_many( "price_usd", slugs=["bitcoin", "ethereum", "tether"], from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime bitcoin ethereum tether 2022-01-01 00:00:00+00:00 47686.811509 3769.696916 1.000500 2022-01-02 00:00:00+00:00 47345.220564 3829.565045 1.000460 2022-01-03 00:00:00+00:00 46458.116959 3761.380274 1.000165 2022-01-04 00:00:00+00:00 45928.661063 3795.890130 1.000208 2022-01-05 00:00:00+00:00 43569.003348 3550.386882 1.000122 ``` Fetch development activity of a specific Github organization: ```python import san san.get( "dev_activity", selector={"organization": "google"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 176.0 2022-01-02 00:00:00+00:00 129.0 2022-01-03 00:00:00+00:00 562.0 2022-01-04 00:00:00+00:00 1381.0 2022-01-05 00:00:00+00:00 1334.0 ``` Fetch a metric for a contract address, not a slug: ```python import san san.get( "contract_transactions_count", selector={"contractAddress": "0x00000000219ab540356cBB839Cbe05303d7705Fa"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 90.0 2022-01-02 00:00:00+00:00 339.0 2022-01-03 00:00:00+00:00 486.0 2022-01-04 00:00:00+00:00 314.0 2022-01-05 00:00:00+00:00 328.0 ``` Fetch top holders metric and specify the number of top holders to be counted: ```python import san san.get( "amount_in_top_holders", selector={"slug": "santiment", "holdersCount": 10}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 7.391186e+07 2022-01-02 00:00:00+00:00 7.391438e+07 2022-01-03 00:00:00+00:00 7.391984e+07 2022-01-04 00:00:00+00:00 7.391984e+07 2022-01-05 00:00:00+00:00 7.391984e+07 ``` Fetch trade volume of a given DEX for a given slug ```python import san # This requires Santiment API PRO apikey configured san.get( "total_trade_volume_by_dex", selector={"slug": "ethereum", "label": "decentralized_exchange", "owner": "UniswapV2"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 96882.176846 2022-01-02 00:00:00+00:00 85184.970249 2022-01-03 00:00:00+00:00 107489.846163 2022-01-04 00:00:00+00:00 105204.677503 2022-01-05 00:00:00+00:00 174178.848916 ``` Fetch metric by providing `metric/slug` as first argument and no `slug` as named parameter: ```python import san san.get( "daily_active_addresses/bitcoin", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` ``` datetime value 2018-06-01 00:00:00+00:00 692508.0 2018-06-02 00:00:00+00:00 521887.0 2018-06-03 00:00:00+00:00 531464.0 2018-06-04 00:00:00+00:00 702902.0 2018-06-05 00:00:00+00:00 655695.0 ``` Fetch non-timeseries data: ```python import san san.get("projects/all") ``` ``` name slug ticker totalSupply 0 0chain 0chain ZCN 400000000 1 0x 0x ZRX 1000000000 2 0xBitcoin 0xbtc 0xBTC 20999984 ``` ### Execute an arbitrary GraphQL request Some of the available queries in the [Santiment API](https://api.santiment.net) do not have a dedicated sanpy function. Alternatively, if the returned format needs to be parsed differently, this approach can be used, too. They can be fetched by providing the raw GraphQL query. Fetching data for many slugs at the same time. Note that this is also available as `san.get_many` ```python import san import pandas as pd result = san.graphql.execute_gql(""" { getMetric(metric: "price_usd") { timeseriesDataPerSlug( selector: {slugs: ["ethereum", "bitcoin"]} from: "2022-05-05T00:00:00Z" to: "2022-05-08T00:00:00Z" interval: "1d") { datetime data{ value slug } } } } """) data = result['getMetric']['timeseriesDataPerSlug'] rows = [] for datetime_point in data: row = {'datetime': datetime_point['datetime']} for slug_data in datetime_point['data']: row[slug_data['slug']] = slug_data['value'] rows.append(row) df = pd.DataFrame(rows) df.set_index('datetime', inplace=True) ``` ``` datetime bitcoin ethereum 2022-05-05T00:00:00Z 36575.142133 2749.213042 2022-05-06T00:00:00Z 36040.922350 2694.979684 2022-05-07T00:00:00Z 35501.954144 2636.092958 ``` Fetching a specific set of fields for a project: ```python import san import pandas as pd result = san.graphql.execute_gql("""{ projectBySlug(slug: "santiment") { slug name ticker infrastructure mainContractAddress twitterLink } }""") pd.DataFrame(result["projectBySlug"], index=[0]) ``` ``` infrastructure mainContractAddress name slug ticker twitterLink 0 ETH 0x7c5a0ce9267ed19b22f8cae653f198e3e8daf098 Santiment santiment SAN https://twitter.com/santimentfeed ``` ## Execute SQL queries and get the result One of the Santiment products is [Santiment Queries](https://academy.santiment.net/santiment-queries/). It allows you to execute SQL queries on a database hosted by Santiment. Explore the documentation in order to get familiar with the available data and how to write SQL queries. In order to execute a query you need to provide your API key. Executing a query and getting the result as a pandas DataFrame: ```python import san san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5") ``` ``` metric_id asset_id dt value computed_at 0 10 1369 2015-07-17T00:00:00Z 0.0 2020-10-21T08:48:42Z 1 10 1369 2015-07-18T00:00:00Z 0.0 2020-10-21T08:48:42Z 2 10 1369 2015-07-19T00:00:00Z 0.0 2020-10-21T08:48:42Z 3 10 1369 2015-07-20T00:00:00Z 0.0 2020-10-21T08:48:42Z 4 10 1369 2015-07-21T00:00:00Z 0.0 2020-10-21T08:48:42Z ``` In order to change the index to one of the columns, provide the `set_index` parameter: ```python import san san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5", set_index="dt") ``` ``` dt metric_id asset_id value computed_at 2015-07-17T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-18T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-19T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-20T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-21T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z ``` The queries can be parametrized. In the query the parameters are named parameters, surrounded by two curly brackets `{{key}}`. The parameters is a dictionary. The query can be a multiline string: ```python san.execute_sql(query=""" SELECT get_metric_name(metric_id) AS metric, get_asset_name(asset_id) AS asset, dt, argMax(value, computed_at) FROM daily_metrics_v2 WHERE asset_id = get_asset_id({{slug}}) AND metric_id = get_metric_id({{metric}}) AND dt >= now() - INTERVAL {{last_n_days}} DAY GROUP BY dt, metric_id, asset_id ORDER BY dt ASC """, parameters={'slug': 'bitcoin', 'metric': 'daily_active_addresses', 'last_n_days': 7}, set_index="dt") ``` ``` dt metric asset value 2023-03-22T00:00:00Z daily_active_addresses bitcoin 941446.0 2023-03-23T00:00:00Z daily_active_addresses bitcoin 913215.0 2023-03-24T00:00:00Z daily_active_addresses bitcoin 884271.0 2023-03-25T00:00:00Z daily_active_addresses bitcoin 906851.0 2023-03-26T00:00:00Z daily_active_addresses bitcoin 835596.0 2023-03-27T00:00:00Z daily_active_addresses bitcoin 1052637.0 2023-03-28T00:00:00Z daily_active_addresses bitcoin 311566.0 ``` ## Available metrics Getting all of the metrics as a list is done using the following code: ```python san.available_metrics() ``` ## Available Metrics for Slug Getting all of the metrics for a given slug is achieved with the following code: ```python san.available_metrics_for_slug("santiment") ``` ## Fetch timeseries metric ```python import san san.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` Using the defaults params (last 1 year of data with 1 day interval): ```python san.get("daily_active_addresses", slug="santiment") san.get("price_usd", slug="santiment") ``` ## Fetching metadata for a metric Fetching the metadata for an on-chain metric. ```python san.metadata( "nvt", arr=["availableSlugs", "defaultAggregation", "humanReadableName", "isAccessible", "isRestricted", "restrictedFrom", "restrictedTo"] ) ``` Example result: ```python {"availableSlugs": ["0chain", "0x", "0xbtc", "0xcert", "1sg", ...], "defaultAggregation": "AVG", "humanReadableName": "NVT (Using Circulation)", "isAccessible": True, "isRestricted": True, "restrictedFrom": "2020-03-21T08:44:14Z", "restrictedTo": "2020-06-17T08:44:14Z"} ``` - `availableSlugs` - A list of all slugs available for this metric. - `defaultAggregation` - If big interval are queried, all values that fall into this interval will be aggregated with this aggregation. - `humanReadableName` - A name of the metric suitable for showing to users. - `isAccessible` - `True` if the metric is accessible. If API key is configured, c hecks the API plan subscriptions. `False` if the metric is not accessible. For example `circulation_1d` requires `PRO` plan subscription in order to be accessible at all. - `isRestricted` - `True` if time restrictions apply to the metric and your current plan (`Free` if no API key is configured). Check `restrictedFrom` and `restrictedTo`. - `restrictedFrom` - The first datetime available of that metric for your current plan. - `restrictedTo` - The last datetime available of that metric and your current plan. ## Batching multiple queries Multiple queries can be executed in a batch to speed up the performance. There are two batch classes provided - `Batch` and `AsyncBatch`. > Note: Batching improves the performance and the developer experience, but every > query put inside the batch is still counted as one separate API call. > To fetch a metric for multiple assets at a time take a look at `san.get_many` - `AsyncBatch` is the recommended batch class. It executes all the queries in separate HTTP requests. The benefit of using `AsyncBatch` over looping and executing every API call is that the queries can be executed concurrently. Putting multiple API calls in separate HTTP calls also allows to fetch more data, otherwise you might run into [Complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) issues. The concurrency is controlled by the `max_workers` optional parameter to the `execute` function. By default the `max_workers` value is 10. It also supports `get_many` function to fetch data for many assets. - `Batch` combines all the provided queries in a single GraphQL document and executes them in a single HTTP request. This batching technique should be used when lightweight queries that don't fetch a lot of data are used. The reason is that the [complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) of each query is accumulated and the batch can be rejected. Note: If you have been using `Batch()` and want to switch to the newer `AsyncBatch()` you only need to change the batch initialization. The functions for adding queries and executing the batch, as well as the format of the response, are the same. ```python from san import Batch batch = Batch() batch.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) batch.get( "transaction_volume", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) [daa, trx_volume] = batch.execute() ``` ```python from san import AsyncBatch batch = AsyncBatch() batch.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) batch.get_many( "daily_active_addresses", slugs=["bitcoin", "ethereum"], from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) [daa, daa_many] = batch.execute(max_workers=10) ``` ## Rate Limit Tools There are two functions, which can help you in handling the rate limits: * ``is_rate_limit_exception`` - Returns whether the exception caught is because of rate limitation * ``rate_limit_time_left`` - Returns the time left before the rate limit expires * ``api_calls_made`` - Returns the API calls for each day in which it was used * ``api_calls_remaining`` - Returns the API calls remaining for the month, hour and minute Example: ```python import time import san try: san.get( "price_usd", slug="santiment", from_date="utc_now-30d", to_date="utc_now", interval="1d" ) except Exception as e: if san.is_rate_limit_exception(e): rate_limit_seconds = san.rate_limit_time_left(e) print(f"Will sleep for {rate_limit_seconds}") time.sleep(rate_limit_seconds) calls_by_day = san.api_calls_made() calls_remaining = san.api_calls_remaining() ``` ## Metric Complexity Fetch the complexity of a metric. The complexity depends on the from/to/interval parameters, as well as the metric and the subscription plan. A request might have a maximum complexity of 50000. If a request has a higher complexity there are a few ways to solve the issue: - Break down the request into multiple requests with smaller from-to ranges. - Upgrade to a higher subscription plan. More about the complexity can be found on [Santiment Academy]() ```python san.metric_complexity( metric="price_usd", from_date="2020-01-01", to_date="2020-02-20", interval="1d" ) ``` ## Include Incomplete Data Flag Daily metrics have one value per day. For the current day, the latest computed value will not include a full day of data. For example, computing `daily_active_addresses` at 08:00 includes data for one third of the day. To reduce confusion, the current day value for metrics that have this behaviour is excluded. To force fetching the current day value, the `includeIncompleteData` flag must be used. ```python san.get( "daily_active_addresses/bitcoin", from_date="utc_now-3d", to_date="utc_now", interval="1d", include_incomplete_data=True ) ``` ## Metric/Asset pair available cince Fetch the first datetime for which a metric is available for a given slug. ```python san.available_metric_for_slug_since(metric="daily_active_addresses", slug="santiment") ``` ## Transform the result Example usage: ```python san.get( "price_usd", slug="santiment", from_date="2020-06-01", to_date="2021-06-05", interval="1d", transform={"type": "moving_average", "moving_average_base": 100}, aggregation="LAST" ) ``` Where the parameters, that are not mentioned, are optional: `transform` - Apply a transformation on the data. The supported transformations are: - "moving_average" - Replace every value Vi with the average of the last "moving_average_base" values. - "consecutive_differences" - Replace every value Vi with the value Vi - Vi-1 where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value. - "percent_change" - Replace every value Vi with the percent change of Vi-1 and Vi ( (Vi / Vi-1 - 1) * 100) where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value. `aggregation` - the aggregation which is used for the query results. ## Available projects Returns a DataFrame with all the projects available in the Santiment API. Not all metrics will be available for each of the projects. `slug` is the unique identifier of a project, used in the metrics fetching. ```python san.get("projects/all") ``` Example result: ``` name slug ticker totalSupply 0 0chain 0chain ZCN 400000000 1 0x 0x ZRX 1000000000 2 0xBitcoin 0xbtc 0xBTC 20999984 3 0xcert Protocol 0xcert ZXC 500000000 4 1World 1world 1WO 37219453 5 AB-Chain RTB ab-chain-rtb RTB 27857813 6 Abulaba abulaba AAA 397000000 7 AC3 ac3 AC3 80235326.0 ``` ## Non-standard metrics Here is a list of metrics that are not part of the returned list of metrics found above. This is due to having different response format and semantics. ### Other Price metrics #### Marketcap, Price USD, Price BTC and Trading Volume ```python san.get( "prices", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` #### Open, High, Close, Low Prices, Volume, Marketcap Note: this query cannot be batched! ```python san.get( "ohlcv", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` Example result: ```python datetime openPriceUsd closePriceUsd highPriceUsd lowPriceUsd volume marketcap 2018-06-01 00:00:00+00:00 1.24380 1.27668 1.26599 1.19099 852857 7.736268e+07 2018-06-02 00:00:00+00:00 1.26136 1.30779 1.27612 1.20958 1242520 7.864724e+07 2018-06-03 00:00:00+00:00 1.28270 1.28357 1.24625 1.21872 1032910 7.844339e+07 2018-06-04 00:00:00+00:00 1.23276 1.24910 1.18528 1.18010 617451 7.604326e+07 ``` ### Mining Pools Distribution Returns distribution of miners between mining pools. What part of the miners are using top3, top10 and all the other pools. Currently only ETH is supported. [Premium metric](#premium-metrics) ```python san.get( "mining_pools_distribution", slug="ethereum", from_date="2019-06-01", to_date="2019-06-05", interval="1d" ) ``` Example result: ``` datetime other top10 top3 2019-06-01 00:00:00+00:00 0.129237 0.249906 0.620857 2019-06-02 00:00:00+00:00 0.127432 0.251903 0.620666 2019-06-03 00:00:00+00:00 0.122058 0.249603 0.628339 2019-06-04 00:00:00+00:00 0.127726 0.254982 0.617293 2019-06-05 00:00:00+00:00 0.120436 0.265842 0.613722 ``` ### Historical Balance Historical balance for erc20 token or eth address. Returns the historical balance for a given address in the given interval. ```python san.get( "historical_balance", slug="santiment", address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2", from_date="2019-04-18", to_date="2019-04-23", interval="1d" ) ``` Example result: ``` datetime balance 2019-04-18 00:00:00+00:00 382338.33 2019-04-19 00:00:00+00:00 382338.33 2019-04-20 00:00:00+00:00 382338.33 2019-04-21 00:00:00+00:00 215664.33 2019-04-22 00:00:00+00:00 215664.33 ``` ### Ethereum Top Transactions Top ETH transactions for project's team wallets. Available transaction types: - ALL - IN - OUT ```python san.get( "eth_top_transactions", slug="santiment", from_date="2019-04-18", to_date="2019-04-30", limit=5, transaction_type="ALL" ) ``` Example result: **The result is shortened for convenience** ``` datetime fromAddress fromAddressInExchange toAddress toAddressInExchange trxHash trxValue 2019-04-29 21:33:31+00:00 0xe76fe52a251c8f... False 0x45d6275d9496b... False 0x776cd57382456a... 100.00 2019-04-29 21:21:18+00:00 0xe76fe52a251c8f... False 0x468bdccdc334f... False 0x848414fb5c382f... 40.95 2019-04-19 14:14:52+00:00 0x1f3df0b8390bb8... False 0xd69bc0585e05e... False 0x590512e1f1fbcf... 19.48 2019-04-19 14:09:58+00:00 0x1f3df0b8390bb8... False 0x723fb5c14eaff... False 0x78e0720b9e72d1... 15.15 ``` ### Ethereum Spent Over Time ETH spent for each interval from the project's team wallet and time period ```python san.get( "eth_spent_over_time", slug="santiment", from_date="2019-04-18", to_date="2019-04-23", interval="1d" ) ``` Example result: ``` datetime ethSpent 2019-04-18 00:00:00+00:00 0.000000 2019-04-19 00:00:00+00:00 34.630284 2019-04-20 00:00:00+00:00 0.000000 2019-04-21 00:00:00+00:00 0.000158 2019-04-22 00:00:00+00:00 0.000000 ``` ### Token Top Transactions Top transactions for the token of a given project ```python san.get( "token_top_transactions", slug="santiment", from_date="2019-04-18", to_date="2019-04-30", limit=5 ) ``` Example result: **The result is shortened for convenience** ``` datetime fromAddress fromAddressInExchange toAddress toAddressInExchange trxHash trxValue 2019-04-21 13:51:59+00:00 0x1f3df0b8390bb8... False 0x5eaae5e949952... False 0xdbced935b09dd0... 166674.00000 2019-04-28 07:43:38+00:00 0x0a920bfdf7f977... False 0x868074aab18ea... False 0x5f2214d34bcdc3... 33181.82279 2019-04-28 07:53:32+00:00 0x868074aab18ea3... False 0x876eabf441b2e... True 0x90bd286da38a2b... 33181.82279 2019-04-26 14:38:45+00:00 0x876eabf441b2ee... True 0x76af586d041d6... False 0xe45b86f415e930... 28999.64023 2019-04-30 15:17:28+00:00 0x876eabf441b2ee... True 0x1f4a90043cf2d... False 0xc85892b9ef8c64... 20544.42975 ``` ### Top Transfers Top transfers for the token of a given project, ``address`` and ``transaction_type`` arguments can be added as well, in the form of a key-value pair. The ``transaction_type`` parameter can have one of these three values: ``ALL``, ``OUT``, ``IN``. ```python san.get( "top_transfers", slug="santiment", from_date="utc_now-30d", to_date="utc_now", ) ``` **The result is shortened for convenience** Example result: ``` fromAddress toAddress trxHash trxValue datetime 2021-06-17 00:16:26+00:00 0xa48df... 0x876ea... 0x62a56... 136114.069733 2021-06-17 00:10:05+00:00 0xbd3c2... 0x876ea... 0x732a5... 117339.779890 2021-06-19 21:36:03+00:00 0x59646... 0x0d45b... 0x5de31... 112336.882707 ``` ```python san.get( "top_transfers", slug="santiment", address="0x26e068650ae54b6c1b149e1b926634b07e137b9f", transaction_type="ALL", from_date="utc_now-30d", to_date="utc_now", ) ``` Example result: ``` fromAddress toAddress trxHash trxValue datetime 2021-06-13 09:14:01+00:00 0x26e06... 0xfd3d... 0x4af6... 69854.528 2021-06-13 09:13:01+00:00 0x876ea... 0x26e0... 0x18c1... 69854.528 2021-06-14 08:54:52+00:00 0x876ea... 0x26e0... 0xdceb... 59920.591 ``` ### Emerging Trends Emerging trends for a given period of time. ```python san.get( "emerging_trends", from_date="2019-07-01", to_date="2019-07-02", interval="1d", size=5 ) ``` Example result: ``` datetime score word 2019-07-01 00:00:00+00:00 375.160034 lnbc 2019-07-01 00:00:00+00:00 355.323281 dent 2019-07-01 00:00:00+00:00 268.653820 link 2019-07-01 00:00:00+00:00 231.721809 shorts 2019-07-01 00:00:00+00:00 206.812798 btt 2019-07-02 00:00:00+00:00 209.343752 bounce 2019-07-02 00:00:00+00:00 135.412811 vidt 2019-07-02 00:00:00+00:00 116.842801 bat 2019-07-02 00:00:00+00:00 98.517600 bottom 2019-07-02 00:00:00+00:00 89.309975 haiku ``` ### Top Social Gainers Losers Top social gainers/losers returns the social volume changes for crypto projects. ```python san.get( "top_social_gainers_losers", from_date="2019-07-18", to_date="2019-07-30", size=5, time_window="2d", status="ALL" ) ``` Example result: **The result is shortened for convenience** ``` datetime slug change status 2019-07-28 01:00:00+00:00 libra-credit 21.000000 GAINER 2019-07-28 01:00:00+00:00 aeon -1.000000 LOSER 2019-07-28 01:00:00+00:00 thunder-token 5.000000 NEWCOMER 2019-07-28 02:00:00+00:00 libra-credit 43.000000 GAINER 2019-07-30 07:00:00+00:00 storj 12.000000 NEWCOMER 2019-07-30 11:00:00+00:00 storj 21.000000 GAINER 2019-07-30 11:00:00+00:00 aergo -1.000000 LOSER 2019-07-30 11:00:00+00:00 litex 8.000000 NEWCOMER ``` ## Extras Take a look at the [examples](/examples/extras) folder. ## Development It is recommended to use [pipenv](https://github.com/pypa/pipenv) for managing your local environment. Setup project: ```bash pipenv install ``` Install main dependencies: ```bash pipenv run pip install -e . ``` Install extra dependencies: ```bash pipenv run pip install -e '.[extras]' ``` ## Running tests ```bash python setup.py test ``` ## Running integration tests ```bash python setup.py nosetests -a integration ``` %package help Summary: Development documents and examples for sanpy Provides: python3-sanpy-doc %description help [![PyPI version](https://badge.fury.io/py/sanpy.svg)](https://badge.fury.io/py/sanpy) Python client for cryptocurrency data from [Santiment API](https://api.santiment.net/). This library provides utilities for accessing the GraphQL Santiment API endpoint and convert the result to pandas dataframe. More documentation regarding the API and definitions of metrics can be found on [Santiment Academy]() # Table of contents - [sanpy](#sanpy) - [Table of contents](#table-of-contents) - [Installation](#installation) - [Upgrade to latest version](#upgrade-to-latest-version) - [Install extra packages](#install-extra-packages) - [Restricted metrics](#restricted-metrics) - [Configuration](#configuration) - [Read the API key from the environment](#read-the-api-key-from-the-environment) - [Manually configure an API key](#manually-configure-an-api-key) - [How to obtain an API key](#how-to-obtain-an-api-key) - [Getting the data](#getting-the-data) - [Using the provided functions](#using-the-provided-functions) - [Execute an arbitrary GraphQL request](#execute-an-arbitrary-graphql-request) - [Execute SQL queries and get the result](#execute-sql-queries-and-get-the-result) - [Available metrics](#available-metrics) - [Available Metrics for Slug](#available-metrics-for-slug) - [Fetch timeseries metric](#fetch-timeseries-metric) - [Fetching metadata for a metric](#fetching-metadata-for-a-metric) - [Batching multiple queries](#batching-multiple-queries) - [Rate Limit Tools](#rate-limit-tools) - [Metric Complexity](#metric-complexity) - [Include Incomplete Data Flag](#include-incomplete-data-flag) - [Metric/Asset pair available cince](#metricasset-pair-available-cince) - [Transform the result](#transform-the-result) - [Available projects](#available-projects) - [Non-standard metrics](#non-standard-metrics) - [Other Price metrics](#other-price-metrics) - [Marketcap, Price USD, Price BTC and Trading Volume](#marketcap-price-usd-price-btc-and-trading-volume) - [Open, High, Close, Low Prices, Volume, Marketcap](#open-high-close-low-prices-volume-marketcap) - [Mining Pools Distribution](#mining-pools-distribution) - [Historical Balance](#historical-balance) - [Ethereum Top Transactions](#ethereum-top-transactions) - [Ethereum Spent Over Time](#ethereum-spent-over-time) - [Token Top Transactions](#token-top-transactions) - [Top Transfers](#top-transfers) - [Emerging Trends](#emerging-trends) - [Top Social Gainers Losers](#top-social-gainers-losers) - [Extras](#extras) - [Development](#development) - [Running tests](#running-tests) - [Running integration tests](#running-integration-tests) ## Installation To install the latest [sanpy from PyPI](https://pypi.org/project/sanpy/): ```bash pip install sanpy ``` ## Upgrade to latest version ```bash pip install --upgrade sanpy ``` ## Install extra packages There are few scripts under [extras](/san/extras) directory related to backtesting and event studies. To install their dependencies use: ```bash pip install sanpy[extras] ``` ## Restricted metrics In order to access real-time data or historical data for some of the metrics, you'll need to set the [API key](#configuration), generated from an account with a paid API plan. ## Configuration You can provide an API key which gives access to the restricted metrics in two different ways: ### Read the API key from the environment During loading of the `san` module, if the `SANPY_APIKEY` exists, its content is read and set as the API key. ```shell export SANPY_APIKEY="my_apikey" ``` ```python import san >>> san.ApiConfig.api_key 'my_apikey' ``` ### Manually configure an API key ```python import san san.ApiConfig.api_key = "my_apikey" ``` ### How to obtain an API key To obtain an API key you should [log in to sanbase](https://app.santiment.net/login) and go to the `Account` page - [https://app.santiment.net/account](https://app.santiment.net/account). There is an `API Keys` section and a `Generate new api key` button. ## Getting the data ### Using the provided functions The library provides the `get` and `get_many` functions that are used to fetch data. `get` is used to fetch timeseries data for a single metric/asset pair. `get_many` is used to fetch timeseries data for a single metric, but many assets. This is counted as 1 API call. The first argument to the functions is the metric name. The rest of the parameters are:: - `slug` - (for `get`) The project identificator, as seen in [the Available projects section](#available-projects) - `slugs` - (for `get_many`) A list of projects' identificators, as seen in [the Available projects section](#available-projects) - `selector` - Allow for more flexible selection of the target. Some metrics are computed on blockchain addresses, for others you can provide a list of slugs, labels, amount of top holders. etc. - `from_date` - A date or datetime in ISO8601 format specifying the start of the queried period. Defaults to `datetime.utcnow() - 365 days` - `to_date` - A date or datetime in ISO86091 format specifying the end of the queried period. Defaults to `datetime.utcnow()` - `interval` - The interval between the data points in the timeseries. Defaults to `'1d'` It is represented in two different ways: - a fixed range: an integer followed by one of: `s`, `m`, `h`, `d` or `w` - a function, providing some semantic or a dynamic range: `toStartOfMonth`, `toStartOfDay`, `toStartOfWeek`, `toMonday`.. The returned result for time-series data is transformed into `pandas DataFrame` and is indexed by `datetime`. For `get`, the value column is named `value`. For `get_many`, there is one column per asset queried. The asset slugs are used for the column names. For backwards compatibility, fetching the metric by providing `"metric/slug"` as the first instead of using a separate `'slug'`/`'selector'` continues to work, but it is not the recommended approach. For non-metric related data like getting the list of available assets, the data is fetched by providing a string in the format `query/argument` and additional parameters. The examples below contain some of the described scenarios. Fetch metric by providing `metric` as first argument and `slug` as named parameter: ```python import san san.get( "price_usd", slug="bitcoin", from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 47686.811509 2022-01-02 00:00:00+00:00 47345.220564 2022-01-03 00:00:00+00:00 46458.116959 2022-01-04 00:00:00+00:00 45928.661063 2022-01-05 00:00:00+00:00 43569.003348 ``` Fetch prices for multiple assets: ```python import san san.get_many( "price_usd", slugs=["bitcoin", "ethereum", "tether"], from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime bitcoin ethereum tether 2022-01-01 00:00:00+00:00 47686.811509 3769.696916 1.000500 2022-01-02 00:00:00+00:00 47345.220564 3829.565045 1.000460 2022-01-03 00:00:00+00:00 46458.116959 3761.380274 1.000165 2022-01-04 00:00:00+00:00 45928.661063 3795.890130 1.000208 2022-01-05 00:00:00+00:00 43569.003348 3550.386882 1.000122 ``` Fetch development activity of a specific Github organization: ```python import san san.get( "dev_activity", selector={"organization": "google"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 176.0 2022-01-02 00:00:00+00:00 129.0 2022-01-03 00:00:00+00:00 562.0 2022-01-04 00:00:00+00:00 1381.0 2022-01-05 00:00:00+00:00 1334.0 ``` Fetch a metric for a contract address, not a slug: ```python import san san.get( "contract_transactions_count", selector={"contractAddress": "0x00000000219ab540356cBB839Cbe05303d7705Fa"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 90.0 2022-01-02 00:00:00+00:00 339.0 2022-01-03 00:00:00+00:00 486.0 2022-01-04 00:00:00+00:00 314.0 2022-01-05 00:00:00+00:00 328.0 ``` Fetch top holders metric and specify the number of top holders to be counted: ```python import san san.get( "amount_in_top_holders", selector={"slug": "santiment", "holdersCount": 10}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 7.391186e+07 2022-01-02 00:00:00+00:00 7.391438e+07 2022-01-03 00:00:00+00:00 7.391984e+07 2022-01-04 00:00:00+00:00 7.391984e+07 2022-01-05 00:00:00+00:00 7.391984e+07 ``` Fetch trade volume of a given DEX for a given slug ```python import san # This requires Santiment API PRO apikey configured san.get( "total_trade_volume_by_dex", selector={"slug": "ethereum", "label": "decentralized_exchange", "owner": "UniswapV2"}, from_date="2022-01-01", to_date="2022-01-05", interval="1d" ) ``` ``` datetime value 2022-01-01 00:00:00+00:00 96882.176846 2022-01-02 00:00:00+00:00 85184.970249 2022-01-03 00:00:00+00:00 107489.846163 2022-01-04 00:00:00+00:00 105204.677503 2022-01-05 00:00:00+00:00 174178.848916 ``` Fetch metric by providing `metric/slug` as first argument and no `slug` as named parameter: ```python import san san.get( "daily_active_addresses/bitcoin", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` ``` datetime value 2018-06-01 00:00:00+00:00 692508.0 2018-06-02 00:00:00+00:00 521887.0 2018-06-03 00:00:00+00:00 531464.0 2018-06-04 00:00:00+00:00 702902.0 2018-06-05 00:00:00+00:00 655695.0 ``` Fetch non-timeseries data: ```python import san san.get("projects/all") ``` ``` name slug ticker totalSupply 0 0chain 0chain ZCN 400000000 1 0x 0x ZRX 1000000000 2 0xBitcoin 0xbtc 0xBTC 20999984 ``` ### Execute an arbitrary GraphQL request Some of the available queries in the [Santiment API](https://api.santiment.net) do not have a dedicated sanpy function. Alternatively, if the returned format needs to be parsed differently, this approach can be used, too. They can be fetched by providing the raw GraphQL query. Fetching data for many slugs at the same time. Note that this is also available as `san.get_many` ```python import san import pandas as pd result = san.graphql.execute_gql(""" { getMetric(metric: "price_usd") { timeseriesDataPerSlug( selector: {slugs: ["ethereum", "bitcoin"]} from: "2022-05-05T00:00:00Z" to: "2022-05-08T00:00:00Z" interval: "1d") { datetime data{ value slug } } } } """) data = result['getMetric']['timeseriesDataPerSlug'] rows = [] for datetime_point in data: row = {'datetime': datetime_point['datetime']} for slug_data in datetime_point['data']: row[slug_data['slug']] = slug_data['value'] rows.append(row) df = pd.DataFrame(rows) df.set_index('datetime', inplace=True) ``` ``` datetime bitcoin ethereum 2022-05-05T00:00:00Z 36575.142133 2749.213042 2022-05-06T00:00:00Z 36040.922350 2694.979684 2022-05-07T00:00:00Z 35501.954144 2636.092958 ``` Fetching a specific set of fields for a project: ```python import san import pandas as pd result = san.graphql.execute_gql("""{ projectBySlug(slug: "santiment") { slug name ticker infrastructure mainContractAddress twitterLink } }""") pd.DataFrame(result["projectBySlug"], index=[0]) ``` ``` infrastructure mainContractAddress name slug ticker twitterLink 0 ETH 0x7c5a0ce9267ed19b22f8cae653f198e3e8daf098 Santiment santiment SAN https://twitter.com/santimentfeed ``` ## Execute SQL queries and get the result One of the Santiment products is [Santiment Queries](https://academy.santiment.net/santiment-queries/). It allows you to execute SQL queries on a database hosted by Santiment. Explore the documentation in order to get familiar with the available data and how to write SQL queries. In order to execute a query you need to provide your API key. Executing a query and getting the result as a pandas DataFrame: ```python import san san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5") ``` ``` metric_id asset_id dt value computed_at 0 10 1369 2015-07-17T00:00:00Z 0.0 2020-10-21T08:48:42Z 1 10 1369 2015-07-18T00:00:00Z 0.0 2020-10-21T08:48:42Z 2 10 1369 2015-07-19T00:00:00Z 0.0 2020-10-21T08:48:42Z 3 10 1369 2015-07-20T00:00:00Z 0.0 2020-10-21T08:48:42Z 4 10 1369 2015-07-21T00:00:00Z 0.0 2020-10-21T08:48:42Z ``` In order to change the index to one of the columns, provide the `set_index` parameter: ```python import san san.execute_sql(query="SELECT * FROM daily_metrics_v2 LIMIT 5", set_index="dt") ``` ``` dt metric_id asset_id value computed_at 2015-07-17T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-18T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-19T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-20T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z 2015-07-21T00:00:00Z 10 1369 0.0 2020-10-21T08:48:42Z ``` The queries can be parametrized. In the query the parameters are named parameters, surrounded by two curly brackets `{{key}}`. The parameters is a dictionary. The query can be a multiline string: ```python san.execute_sql(query=""" SELECT get_metric_name(metric_id) AS metric, get_asset_name(asset_id) AS asset, dt, argMax(value, computed_at) FROM daily_metrics_v2 WHERE asset_id = get_asset_id({{slug}}) AND metric_id = get_metric_id({{metric}}) AND dt >= now() - INTERVAL {{last_n_days}} DAY GROUP BY dt, metric_id, asset_id ORDER BY dt ASC """, parameters={'slug': 'bitcoin', 'metric': 'daily_active_addresses', 'last_n_days': 7}, set_index="dt") ``` ``` dt metric asset value 2023-03-22T00:00:00Z daily_active_addresses bitcoin 941446.0 2023-03-23T00:00:00Z daily_active_addresses bitcoin 913215.0 2023-03-24T00:00:00Z daily_active_addresses bitcoin 884271.0 2023-03-25T00:00:00Z daily_active_addresses bitcoin 906851.0 2023-03-26T00:00:00Z daily_active_addresses bitcoin 835596.0 2023-03-27T00:00:00Z daily_active_addresses bitcoin 1052637.0 2023-03-28T00:00:00Z daily_active_addresses bitcoin 311566.0 ``` ## Available metrics Getting all of the metrics as a list is done using the following code: ```python san.available_metrics() ``` ## Available Metrics for Slug Getting all of the metrics for a given slug is achieved with the following code: ```python san.available_metrics_for_slug("santiment") ``` ## Fetch timeseries metric ```python import san san.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` Using the defaults params (last 1 year of data with 1 day interval): ```python san.get("daily_active_addresses", slug="santiment") san.get("price_usd", slug="santiment") ``` ## Fetching metadata for a metric Fetching the metadata for an on-chain metric. ```python san.metadata( "nvt", arr=["availableSlugs", "defaultAggregation", "humanReadableName", "isAccessible", "isRestricted", "restrictedFrom", "restrictedTo"] ) ``` Example result: ```python {"availableSlugs": ["0chain", "0x", "0xbtc", "0xcert", "1sg", ...], "defaultAggregation": "AVG", "humanReadableName": "NVT (Using Circulation)", "isAccessible": True, "isRestricted": True, "restrictedFrom": "2020-03-21T08:44:14Z", "restrictedTo": "2020-06-17T08:44:14Z"} ``` - `availableSlugs` - A list of all slugs available for this metric. - `defaultAggregation` - If big interval are queried, all values that fall into this interval will be aggregated with this aggregation. - `humanReadableName` - A name of the metric suitable for showing to users. - `isAccessible` - `True` if the metric is accessible. If API key is configured, c hecks the API plan subscriptions. `False` if the metric is not accessible. For example `circulation_1d` requires `PRO` plan subscription in order to be accessible at all. - `isRestricted` - `True` if time restrictions apply to the metric and your current plan (`Free` if no API key is configured). Check `restrictedFrom` and `restrictedTo`. - `restrictedFrom` - The first datetime available of that metric for your current plan. - `restrictedTo` - The last datetime available of that metric and your current plan. ## Batching multiple queries Multiple queries can be executed in a batch to speed up the performance. There are two batch classes provided - `Batch` and `AsyncBatch`. > Note: Batching improves the performance and the developer experience, but every > query put inside the batch is still counted as one separate API call. > To fetch a metric for multiple assets at a time take a look at `san.get_many` - `AsyncBatch` is the recommended batch class. It executes all the queries in separate HTTP requests. The benefit of using `AsyncBatch` over looping and executing every API call is that the queries can be executed concurrently. Putting multiple API calls in separate HTTP calls also allows to fetch more data, otherwise you might run into [Complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) issues. The concurrency is controlled by the `max_workers` optional parameter to the `execute` function. By default the `max_workers` value is 10. It also supports `get_many` function to fetch data for many assets. - `Batch` combines all the provided queries in a single GraphQL document and executes them in a single HTTP request. This batching technique should be used when lightweight queries that don't fetch a lot of data are used. The reason is that the [complexity](https://academy.santiment.net/for-developers/#graphql-api-complexity) of each query is accumulated and the batch can be rejected. Note: If you have been using `Batch()` and want to switch to the newer `AsyncBatch()` you only need to change the batch initialization. The functions for adding queries and executing the batch, as well as the format of the response, are the same. ```python from san import Batch batch = Batch() batch.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) batch.get( "transaction_volume", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) [daa, trx_volume] = batch.execute() ``` ```python from san import AsyncBatch batch = AsyncBatch() batch.get( "daily_active_addresses", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) batch.get_many( "daily_active_addresses", slugs=["bitcoin", "ethereum"], from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) [daa, daa_many] = batch.execute(max_workers=10) ``` ## Rate Limit Tools There are two functions, which can help you in handling the rate limits: * ``is_rate_limit_exception`` - Returns whether the exception caught is because of rate limitation * ``rate_limit_time_left`` - Returns the time left before the rate limit expires * ``api_calls_made`` - Returns the API calls for each day in which it was used * ``api_calls_remaining`` - Returns the API calls remaining for the month, hour and minute Example: ```python import time import san try: san.get( "price_usd", slug="santiment", from_date="utc_now-30d", to_date="utc_now", interval="1d" ) except Exception as e: if san.is_rate_limit_exception(e): rate_limit_seconds = san.rate_limit_time_left(e) print(f"Will sleep for {rate_limit_seconds}") time.sleep(rate_limit_seconds) calls_by_day = san.api_calls_made() calls_remaining = san.api_calls_remaining() ``` ## Metric Complexity Fetch the complexity of a metric. The complexity depends on the from/to/interval parameters, as well as the metric and the subscription plan. A request might have a maximum complexity of 50000. If a request has a higher complexity there are a few ways to solve the issue: - Break down the request into multiple requests with smaller from-to ranges. - Upgrade to a higher subscription plan. More about the complexity can be found on [Santiment Academy]() ```python san.metric_complexity( metric="price_usd", from_date="2020-01-01", to_date="2020-02-20", interval="1d" ) ``` ## Include Incomplete Data Flag Daily metrics have one value per day. For the current day, the latest computed value will not include a full day of data. For example, computing `daily_active_addresses` at 08:00 includes data for one third of the day. To reduce confusion, the current day value for metrics that have this behaviour is excluded. To force fetching the current day value, the `includeIncompleteData` flag must be used. ```python san.get( "daily_active_addresses/bitcoin", from_date="utc_now-3d", to_date="utc_now", interval="1d", include_incomplete_data=True ) ``` ## Metric/Asset pair available cince Fetch the first datetime for which a metric is available for a given slug. ```python san.available_metric_for_slug_since(metric="daily_active_addresses", slug="santiment") ``` ## Transform the result Example usage: ```python san.get( "price_usd", slug="santiment", from_date="2020-06-01", to_date="2021-06-05", interval="1d", transform={"type": "moving_average", "moving_average_base": 100}, aggregation="LAST" ) ``` Where the parameters, that are not mentioned, are optional: `transform` - Apply a transformation on the data. The supported transformations are: - "moving_average" - Replace every value Vi with the average of the last "moving_average_base" values. - "consecutive_differences" - Replace every value Vi with the value Vi - Vi-1 where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value. - "percent_change" - Replace every value Vi with the percent change of Vi-1 and Vi ( (Vi / Vi-1 - 1) * 100) where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value. `aggregation` - the aggregation which is used for the query results. ## Available projects Returns a DataFrame with all the projects available in the Santiment API. Not all metrics will be available for each of the projects. `slug` is the unique identifier of a project, used in the metrics fetching. ```python san.get("projects/all") ``` Example result: ``` name slug ticker totalSupply 0 0chain 0chain ZCN 400000000 1 0x 0x ZRX 1000000000 2 0xBitcoin 0xbtc 0xBTC 20999984 3 0xcert Protocol 0xcert ZXC 500000000 4 1World 1world 1WO 37219453 5 AB-Chain RTB ab-chain-rtb RTB 27857813 6 Abulaba abulaba AAA 397000000 7 AC3 ac3 AC3 80235326.0 ``` ## Non-standard metrics Here is a list of metrics that are not part of the returned list of metrics found above. This is due to having different response format and semantics. ### Other Price metrics #### Marketcap, Price USD, Price BTC and Trading Volume ```python san.get( "prices", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` #### Open, High, Close, Low Prices, Volume, Marketcap Note: this query cannot be batched! ```python san.get( "ohlcv", slug="santiment", from_date="2018-06-01", to_date="2018-06-05", interval="1d" ) ``` Example result: ```python datetime openPriceUsd closePriceUsd highPriceUsd lowPriceUsd volume marketcap 2018-06-01 00:00:00+00:00 1.24380 1.27668 1.26599 1.19099 852857 7.736268e+07 2018-06-02 00:00:00+00:00 1.26136 1.30779 1.27612 1.20958 1242520 7.864724e+07 2018-06-03 00:00:00+00:00 1.28270 1.28357 1.24625 1.21872 1032910 7.844339e+07 2018-06-04 00:00:00+00:00 1.23276 1.24910 1.18528 1.18010 617451 7.604326e+07 ``` ### Mining Pools Distribution Returns distribution of miners between mining pools. What part of the miners are using top3, top10 and all the other pools. Currently only ETH is supported. [Premium metric](#premium-metrics) ```python san.get( "mining_pools_distribution", slug="ethereum", from_date="2019-06-01", to_date="2019-06-05", interval="1d" ) ``` Example result: ``` datetime other top10 top3 2019-06-01 00:00:00+00:00 0.129237 0.249906 0.620857 2019-06-02 00:00:00+00:00 0.127432 0.251903 0.620666 2019-06-03 00:00:00+00:00 0.122058 0.249603 0.628339 2019-06-04 00:00:00+00:00 0.127726 0.254982 0.617293 2019-06-05 00:00:00+00:00 0.120436 0.265842 0.613722 ``` ### Historical Balance Historical balance for erc20 token or eth address. Returns the historical balance for a given address in the given interval. ```python san.get( "historical_balance", slug="santiment", address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2", from_date="2019-04-18", to_date="2019-04-23", interval="1d" ) ``` Example result: ``` datetime balance 2019-04-18 00:00:00+00:00 382338.33 2019-04-19 00:00:00+00:00 382338.33 2019-04-20 00:00:00+00:00 382338.33 2019-04-21 00:00:00+00:00 215664.33 2019-04-22 00:00:00+00:00 215664.33 ``` ### Ethereum Top Transactions Top ETH transactions for project's team wallets. Available transaction types: - ALL - IN - OUT ```python san.get( "eth_top_transactions", slug="santiment", from_date="2019-04-18", to_date="2019-04-30", limit=5, transaction_type="ALL" ) ``` Example result: **The result is shortened for convenience** ``` datetime fromAddress fromAddressInExchange toAddress toAddressInExchange trxHash trxValue 2019-04-29 21:33:31+00:00 0xe76fe52a251c8f... False 0x45d6275d9496b... False 0x776cd57382456a... 100.00 2019-04-29 21:21:18+00:00 0xe76fe52a251c8f... False 0x468bdccdc334f... False 0x848414fb5c382f... 40.95 2019-04-19 14:14:52+00:00 0x1f3df0b8390bb8... False 0xd69bc0585e05e... False 0x590512e1f1fbcf... 19.48 2019-04-19 14:09:58+00:00 0x1f3df0b8390bb8... False 0x723fb5c14eaff... False 0x78e0720b9e72d1... 15.15 ``` ### Ethereum Spent Over Time ETH spent for each interval from the project's team wallet and time period ```python san.get( "eth_spent_over_time", slug="santiment", from_date="2019-04-18", to_date="2019-04-23", interval="1d" ) ``` Example result: ``` datetime ethSpent 2019-04-18 00:00:00+00:00 0.000000 2019-04-19 00:00:00+00:00 34.630284 2019-04-20 00:00:00+00:00 0.000000 2019-04-21 00:00:00+00:00 0.000158 2019-04-22 00:00:00+00:00 0.000000 ``` ### Token Top Transactions Top transactions for the token of a given project ```python san.get( "token_top_transactions", slug="santiment", from_date="2019-04-18", to_date="2019-04-30", limit=5 ) ``` Example result: **The result is shortened for convenience** ``` datetime fromAddress fromAddressInExchange toAddress toAddressInExchange trxHash trxValue 2019-04-21 13:51:59+00:00 0x1f3df0b8390bb8... False 0x5eaae5e949952... False 0xdbced935b09dd0... 166674.00000 2019-04-28 07:43:38+00:00 0x0a920bfdf7f977... False 0x868074aab18ea... False 0x5f2214d34bcdc3... 33181.82279 2019-04-28 07:53:32+00:00 0x868074aab18ea3... False 0x876eabf441b2e... True 0x90bd286da38a2b... 33181.82279 2019-04-26 14:38:45+00:00 0x876eabf441b2ee... True 0x76af586d041d6... False 0xe45b86f415e930... 28999.64023 2019-04-30 15:17:28+00:00 0x876eabf441b2ee... True 0x1f4a90043cf2d... False 0xc85892b9ef8c64... 20544.42975 ``` ### Top Transfers Top transfers for the token of a given project, ``address`` and ``transaction_type`` arguments can be added as well, in the form of a key-value pair. The ``transaction_type`` parameter can have one of these three values: ``ALL``, ``OUT``, ``IN``. ```python san.get( "top_transfers", slug="santiment", from_date="utc_now-30d", to_date="utc_now", ) ``` **The result is shortened for convenience** Example result: ``` fromAddress toAddress trxHash trxValue datetime 2021-06-17 00:16:26+00:00 0xa48df... 0x876ea... 0x62a56... 136114.069733 2021-06-17 00:10:05+00:00 0xbd3c2... 0x876ea... 0x732a5... 117339.779890 2021-06-19 21:36:03+00:00 0x59646... 0x0d45b... 0x5de31... 112336.882707 ``` ```python san.get( "top_transfers", slug="santiment", address="0x26e068650ae54b6c1b149e1b926634b07e137b9f", transaction_type="ALL", from_date="utc_now-30d", to_date="utc_now", ) ``` Example result: ``` fromAddress toAddress trxHash trxValue datetime 2021-06-13 09:14:01+00:00 0x26e06... 0xfd3d... 0x4af6... 69854.528 2021-06-13 09:13:01+00:00 0x876ea... 0x26e0... 0x18c1... 69854.528 2021-06-14 08:54:52+00:00 0x876ea... 0x26e0... 0xdceb... 59920.591 ``` ### Emerging Trends Emerging trends for a given period of time. ```python san.get( "emerging_trends", from_date="2019-07-01", to_date="2019-07-02", interval="1d", size=5 ) ``` Example result: ``` datetime score word 2019-07-01 00:00:00+00:00 375.160034 lnbc 2019-07-01 00:00:00+00:00 355.323281 dent 2019-07-01 00:00:00+00:00 268.653820 link 2019-07-01 00:00:00+00:00 231.721809 shorts 2019-07-01 00:00:00+00:00 206.812798 btt 2019-07-02 00:00:00+00:00 209.343752 bounce 2019-07-02 00:00:00+00:00 135.412811 vidt 2019-07-02 00:00:00+00:00 116.842801 bat 2019-07-02 00:00:00+00:00 98.517600 bottom 2019-07-02 00:00:00+00:00 89.309975 haiku ``` ### Top Social Gainers Losers Top social gainers/losers returns the social volume changes for crypto projects. ```python san.get( "top_social_gainers_losers", from_date="2019-07-18", to_date="2019-07-30", size=5, time_window="2d", status="ALL" ) ``` Example result: **The result is shortened for convenience** ``` datetime slug change status 2019-07-28 01:00:00+00:00 libra-credit 21.000000 GAINER 2019-07-28 01:00:00+00:00 aeon -1.000000 LOSER 2019-07-28 01:00:00+00:00 thunder-token 5.000000 NEWCOMER 2019-07-28 02:00:00+00:00 libra-credit 43.000000 GAINER 2019-07-30 07:00:00+00:00 storj 12.000000 NEWCOMER 2019-07-30 11:00:00+00:00 storj 21.000000 GAINER 2019-07-30 11:00:00+00:00 aergo -1.000000 LOSER 2019-07-30 11:00:00+00:00 litex 8.000000 NEWCOMER ``` ## Extras Take a look at the [examples](/examples/extras) folder. ## Development It is recommended to use [pipenv](https://github.com/pypa/pipenv) for managing your local environment. Setup project: ```bash pipenv install ``` Install main dependencies: ```bash pipenv run pip install -e . ``` Install extra dependencies: ```bash pipenv run pip install -e '.[extras]' ``` ## Running tests ```bash python setup.py test ``` ## Running integration tests ```bash python setup.py nosetests -a integration ``` %prep %autosetup -n sanpy-0.11.6 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-sanpy -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot - 0.11.6-1 - Package Spec generated