%global _empty_manifest_terminate_build 0 Name: python-gglasso Version: 0.1.9 Release: 1 Summary: Algorithms for Single and Multiple Graphical Lasso problems. License: MIT URL: https://github.com/fabian-sp/GGLasso Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1f/b9/5ac04eaf3cd77d04acf5c00b832cb5787208ee744697159e5afdff202d47/gglasso-0.1.9.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scipy Requires: python3-scikit-learn Requires: python3-numba Requires: python3-pandas Requires: python3-matplotlib Requires: python3-seaborn Requires: python3-networkx Requires: python3-regain Requires: python3-decorator Requires: python3-sphinx Requires: python3-sphinx-gallery Requires: python3-sphinx-rtd-theme Requires: python3-pytest Requires: python3-pytest-cov %description # GGLasso [![PyPI version fury.io](https://badge.fury.io/py/gglasso.svg)](https://pypi.python.org/pypi/gglasso/) [![PyPI license](https://img.shields.io/pypi/l/gglasso.svg)](https://pypi.python.org/pypi/gglasso/) [![Python version](https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8%20%7C%203.9-blue)](https://www.python.org/) [![Documentation Status](https://readthedocs.org/projects/gglasso/badge/?version=latest)](http://gglasso.readthedocs.io/?badge=latest) [![DOI](https://joss.theoj.org/papers/10.21105/joss.03865/status.svg)](https://doi.org/10.21105/joss.03865) [![arXiv](https://img.shields.io/badge/arXiv-2011.00898-b31b1b.svg)](https://arxiv.org/abs/2110.10521) This package contains algorithms for solving General Graphical Lasso (GGLasso) problems, including single, multiple, as well as latent Graphical Lasso problems.
[Docs](https://gglasso.readthedocs.io/en/latest/) | [Examples](https://gglasso.readthedocs.io/en/latest/auto_examples/index.html) ## Getting started ### Install via pip The package is available on pip and can be installed with pip install gglasso ### Install from source Alternatively, you can install the package from source using the following commands: git clone https://github.com/fabian-sp/GGLasso.git pip install -r requirements.txt python setup.py Test your installation with pytest gglasso/ -v ### Advanced options When installing from source, you can also install dependencies with `conda` via the command $ while read requirement; do conda install --yes $requirement || pip install $requirement; done < requirements.txt If you wish to install `gglasso` in developer mode, i.e. not having to reinstall `gglasso` everytime the source code changes (either by remote or local changes), run python setup.py clean --all develop clean --all ## The `glasso_problem` class `GGLasso` can solve multiple problem forumulations, e.g. single and multiple Graphical Lasso problems as well as with and without latent factors. Therefore, the main entry point for the user is the `glasso_problem` class which chooses automatically the correct solver and model selection functionality. See [our documentation](https://gglasso.readthedocs.io/en/latest/problem-object.html) for all the details. ## Algorithms `GGLasso` contains algorithms for Single and Multiple Graphical Lasso problems. Moreover, it allows to model latent variables (Latent variable Graphical Lasso) in order to estimate a precision matrix of type **sparse - low rank**. The following algorithms are contained in the package.
1) ADMM for Single Graphical Lasso
2) ADMM for Group and Fused Graphical Lasso
The algorithm was proposed in [2] and [3]. To use this, import `ADMM_MGL` from `gglasso/solver/admm_solver`.
3) A Proximal Point method for Group and Fused Graphical Lasso
We implement the PPDNA Algorithm like proposed in [4]. To use this, import `warmPPDNA` from `gglasso/solver/ppdna_solver`.
4) ADMM method for Group Graphical Lasso where the features/variables are non-conforming
Method for problems where not all variables exist in all instances/datasets. To use this, import `ext_ADMM_MGL` from `gglasso/solver/ext_admm_solver`.
## Citation If you use `GGLasso`, please consider the following citation @article{Schaipp2021, doi = {10.21105/joss.03865}, url = {https://doi.org/10.21105/joss.03865}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {68}, pages = {3865}, author = {Fabian Schaipp and Oleg Vlasovets and Christian L. Müller}, title = {GGLasso - a Python package for General Graphical Lasso computation}, journal = {Journal of Open Source Software} } ## Community Guidelines 1) Contributions and suggestions to the software are always welcome. Please, consult our [contribution guidelines](CONTRIBUTING.md) prior to submitting a pull request. 2) Report issues or problems with the software using github’s [issue tracker](https://github.com/fabian-sp/GGLasso/issues). 3) Contributors must adhere to the [Code of Conduct](CODE_OF_CONDUCT.md). ## References * [1] Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse inverse covariance estimation with the Graphical Lasso. Biostatistics, 9(3):432–441. * [2] Danaher, P., Wang, P., and Witten, D. M. (2013). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2):373–397. * [3] Tomasi, F., Tozzo, V., Salzo, S., and Verri, A. (2018). Latent Variable Time-varying Network Inference. InProceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM. * [4] Zhang, Y., Zhang, N., Sun, D., and Toh, K.-C. (2020). A proximal point dual Newton algorithm for solving group graphical Lasso problems. SIAM J. Optim., 30(3):2197–2220. %package -n python3-gglasso Summary: Algorithms for Single and Multiple Graphical Lasso problems. Provides: python-gglasso BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-gglasso # GGLasso [![PyPI version fury.io](https://badge.fury.io/py/gglasso.svg)](https://pypi.python.org/pypi/gglasso/) [![PyPI license](https://img.shields.io/pypi/l/gglasso.svg)](https://pypi.python.org/pypi/gglasso/) [![Python version](https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8%20%7C%203.9-blue)](https://www.python.org/) [![Documentation Status](https://readthedocs.org/projects/gglasso/badge/?version=latest)](http://gglasso.readthedocs.io/?badge=latest) [![DOI](https://joss.theoj.org/papers/10.21105/joss.03865/status.svg)](https://doi.org/10.21105/joss.03865) [![arXiv](https://img.shields.io/badge/arXiv-2011.00898-b31b1b.svg)](https://arxiv.org/abs/2110.10521) This package contains algorithms for solving General Graphical Lasso (GGLasso) problems, including single, multiple, as well as latent Graphical Lasso problems.
[Docs](https://gglasso.readthedocs.io/en/latest/) | [Examples](https://gglasso.readthedocs.io/en/latest/auto_examples/index.html) ## Getting started ### Install via pip The package is available on pip and can be installed with pip install gglasso ### Install from source Alternatively, you can install the package from source using the following commands: git clone https://github.com/fabian-sp/GGLasso.git pip install -r requirements.txt python setup.py Test your installation with pytest gglasso/ -v ### Advanced options When installing from source, you can also install dependencies with `conda` via the command $ while read requirement; do conda install --yes $requirement || pip install $requirement; done < requirements.txt If you wish to install `gglasso` in developer mode, i.e. not having to reinstall `gglasso` everytime the source code changes (either by remote or local changes), run python setup.py clean --all develop clean --all ## The `glasso_problem` class `GGLasso` can solve multiple problem forumulations, e.g. single and multiple Graphical Lasso problems as well as with and without latent factors. Therefore, the main entry point for the user is the `glasso_problem` class which chooses automatically the correct solver and model selection functionality. See [our documentation](https://gglasso.readthedocs.io/en/latest/problem-object.html) for all the details. ## Algorithms `GGLasso` contains algorithms for Single and Multiple Graphical Lasso problems. Moreover, it allows to model latent variables (Latent variable Graphical Lasso) in order to estimate a precision matrix of type **sparse - low rank**. The following algorithms are contained in the package.
1) ADMM for Single Graphical Lasso
2) ADMM for Group and Fused Graphical Lasso
The algorithm was proposed in [2] and [3]. To use this, import `ADMM_MGL` from `gglasso/solver/admm_solver`.
3) A Proximal Point method for Group and Fused Graphical Lasso
We implement the PPDNA Algorithm like proposed in [4]. To use this, import `warmPPDNA` from `gglasso/solver/ppdna_solver`.
4) ADMM method for Group Graphical Lasso where the features/variables are non-conforming
Method for problems where not all variables exist in all instances/datasets. To use this, import `ext_ADMM_MGL` from `gglasso/solver/ext_admm_solver`.
## Citation If you use `GGLasso`, please consider the following citation @article{Schaipp2021, doi = {10.21105/joss.03865}, url = {https://doi.org/10.21105/joss.03865}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {68}, pages = {3865}, author = {Fabian Schaipp and Oleg Vlasovets and Christian L. Müller}, title = {GGLasso - a Python package for General Graphical Lasso computation}, journal = {Journal of Open Source Software} } ## Community Guidelines 1) Contributions and suggestions to the software are always welcome. Please, consult our [contribution guidelines](CONTRIBUTING.md) prior to submitting a pull request. 2) Report issues or problems with the software using github’s [issue tracker](https://github.com/fabian-sp/GGLasso/issues). 3) Contributors must adhere to the [Code of Conduct](CODE_OF_CONDUCT.md). ## References * [1] Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse inverse covariance estimation with the Graphical Lasso. Biostatistics, 9(3):432–441. * [2] Danaher, P., Wang, P., and Witten, D. M. (2013). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2):373–397. * [3] Tomasi, F., Tozzo, V., Salzo, S., and Verri, A. (2018). Latent Variable Time-varying Network Inference. InProceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM. * [4] Zhang, Y., Zhang, N., Sun, D., and Toh, K.-C. (2020). A proximal point dual Newton algorithm for solving group graphical Lasso problems. SIAM J. Optim., 30(3):2197–2220. %package help Summary: Development documents and examples for gglasso Provides: python3-gglasso-doc %description help # GGLasso [![PyPI version fury.io](https://badge.fury.io/py/gglasso.svg)](https://pypi.python.org/pypi/gglasso/) [![PyPI license](https://img.shields.io/pypi/l/gglasso.svg)](https://pypi.python.org/pypi/gglasso/) [![Python version](https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8%20%7C%203.9-blue)](https://www.python.org/) [![Documentation Status](https://readthedocs.org/projects/gglasso/badge/?version=latest)](http://gglasso.readthedocs.io/?badge=latest) [![DOI](https://joss.theoj.org/papers/10.21105/joss.03865/status.svg)](https://doi.org/10.21105/joss.03865) [![arXiv](https://img.shields.io/badge/arXiv-2011.00898-b31b1b.svg)](https://arxiv.org/abs/2110.10521) This package contains algorithms for solving General Graphical Lasso (GGLasso) problems, including single, multiple, as well as latent Graphical Lasso problems.
[Docs](https://gglasso.readthedocs.io/en/latest/) | [Examples](https://gglasso.readthedocs.io/en/latest/auto_examples/index.html) ## Getting started ### Install via pip The package is available on pip and can be installed with pip install gglasso ### Install from source Alternatively, you can install the package from source using the following commands: git clone https://github.com/fabian-sp/GGLasso.git pip install -r requirements.txt python setup.py Test your installation with pytest gglasso/ -v ### Advanced options When installing from source, you can also install dependencies with `conda` via the command $ while read requirement; do conda install --yes $requirement || pip install $requirement; done < requirements.txt If you wish to install `gglasso` in developer mode, i.e. not having to reinstall `gglasso` everytime the source code changes (either by remote or local changes), run python setup.py clean --all develop clean --all ## The `glasso_problem` class `GGLasso` can solve multiple problem forumulations, e.g. single and multiple Graphical Lasso problems as well as with and without latent factors. Therefore, the main entry point for the user is the `glasso_problem` class which chooses automatically the correct solver and model selection functionality. See [our documentation](https://gglasso.readthedocs.io/en/latest/problem-object.html) for all the details. ## Algorithms `GGLasso` contains algorithms for Single and Multiple Graphical Lasso problems. Moreover, it allows to model latent variables (Latent variable Graphical Lasso) in order to estimate a precision matrix of type **sparse - low rank**. The following algorithms are contained in the package.
1) ADMM for Single Graphical Lasso
2) ADMM for Group and Fused Graphical Lasso
The algorithm was proposed in [2] and [3]. To use this, import `ADMM_MGL` from `gglasso/solver/admm_solver`.
3) A Proximal Point method for Group and Fused Graphical Lasso
We implement the PPDNA Algorithm like proposed in [4]. To use this, import `warmPPDNA` from `gglasso/solver/ppdna_solver`.
4) ADMM method for Group Graphical Lasso where the features/variables are non-conforming
Method for problems where not all variables exist in all instances/datasets. To use this, import `ext_ADMM_MGL` from `gglasso/solver/ext_admm_solver`.
## Citation If you use `GGLasso`, please consider the following citation @article{Schaipp2021, doi = {10.21105/joss.03865}, url = {https://doi.org/10.21105/joss.03865}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {68}, pages = {3865}, author = {Fabian Schaipp and Oleg Vlasovets and Christian L. Müller}, title = {GGLasso - a Python package for General Graphical Lasso computation}, journal = {Journal of Open Source Software} } ## Community Guidelines 1) Contributions and suggestions to the software are always welcome. Please, consult our [contribution guidelines](CONTRIBUTING.md) prior to submitting a pull request. 2) Report issues or problems with the software using github’s [issue tracker](https://github.com/fabian-sp/GGLasso/issues). 3) Contributors must adhere to the [Code of Conduct](CODE_OF_CONDUCT.md). ## References * [1] Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse inverse covariance estimation with the Graphical Lasso. Biostatistics, 9(3):432–441. * [2] Danaher, P., Wang, P., and Witten, D. M. (2013). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2):373–397. * [3] Tomasi, F., Tozzo, V., Salzo, S., and Verri, A. (2018). Latent Variable Time-varying Network Inference. InProceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM. * [4] Zhang, Y., Zhang, N., Sun, D., and Toh, K.-C. (2020). A proximal point dual Newton algorithm for solving group graphical Lasso problems. SIAM J. Optim., 30(3):2197–2220. %prep %autosetup -n gglasso-0.1.9 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-gglasso -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 15 2023 Python_Bot - 0.1.9-1 - Package Spec generated