%global _empty_manifest_terminate_build 0 Name: python-DeepCell-Tracking Version: 0.6.4 Release: 1 Summary: Tracking cells and lineage with deep learning. License: LICENSE URL: https://github.com/vanvalenlab/deepcell-tracking Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2a/4f/6a773227856fd11c4a0b9a00f014c487329b87222c1874012b43c611c0f3/DeepCell_Tracking-0.6.4.tar.gz BuildArch: noarch %description # ![DeepCell Tracking Banner](https://raw.githubusercontent.com/vanvalenlab/deepcell-tracking/master/docs/images/DeepCell_tracking_Banner.png) [![PyPI version](https://badge.fury.io/py/DeepCell-Tracking.svg)](https://badge.fury.io/py/DeepCell-Tracking) [![Build Status](https://github.com/vanvalenlab/deepcell-tracking/workflows/build/badge.svg)](https://github.com/vanvalenlab/deepcell-tracking/actions) [![Coverage Status](https://coveralls.io/repos/github/vanvalenlab/deepcell-tracking/badge.svg?branch=master)](https://coveralls.io/github/vanvalenlab/deepcell-tracking?branch=master) `deepcell-tracking` uses deep learning models from [deepcell-tf](https://github.com/vanvalenlab/deepcell-tf) within an assignment problem framework to [track cells through time-lapse sequences](https://www.biorxiv.org/content/10.1101/803205v2) and build cell lineages. The assignment problem is solved using the [Hungarian algorithm.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747604/) ## Getting Started `deepcell-tracking` is a Python package that can be installed with `pip`: ```bash pip install deepcell-tracking ``` Or it can be installed from source: ```bash git clone https://github.com/vanvalenlab/deepcell-tracking.git cd deepcell-tracking # install the dependencies pip install . ``` ## How to Use ```python from deepcell_tracking import CellTracker # X and y are the time-sequence data and their corresponding segmentations (labels), respectively. # model is a deepcell-tf tracking model. tracker = CellTracker(X, y, model) tracker.track_cells() # runs in place, builds tracks # Save all tracked data and lineage files to a .trk file tracker.dump('./results.trk') # Open the track file from deepcell_tracking.utils import load_trks data = load_trks('./results.trk') lineage = data['lineages'] # linage information X = data['X'] # raw X data y = data['y'] # tracked y data ``` %package -n python3-DeepCell-Tracking Summary: Tracking cells and lineage with deep learning. Provides: python-DeepCell-Tracking BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-DeepCell-Tracking # ![DeepCell Tracking Banner](https://raw.githubusercontent.com/vanvalenlab/deepcell-tracking/master/docs/images/DeepCell_tracking_Banner.png) [![PyPI version](https://badge.fury.io/py/DeepCell-Tracking.svg)](https://badge.fury.io/py/DeepCell-Tracking) [![Build Status](https://github.com/vanvalenlab/deepcell-tracking/workflows/build/badge.svg)](https://github.com/vanvalenlab/deepcell-tracking/actions) [![Coverage Status](https://coveralls.io/repos/github/vanvalenlab/deepcell-tracking/badge.svg?branch=master)](https://coveralls.io/github/vanvalenlab/deepcell-tracking?branch=master) `deepcell-tracking` uses deep learning models from [deepcell-tf](https://github.com/vanvalenlab/deepcell-tf) within an assignment problem framework to [track cells through time-lapse sequences](https://www.biorxiv.org/content/10.1101/803205v2) and build cell lineages. The assignment problem is solved using the [Hungarian algorithm.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747604/) ## Getting Started `deepcell-tracking` is a Python package that can be installed with `pip`: ```bash pip install deepcell-tracking ``` Or it can be installed from source: ```bash git clone https://github.com/vanvalenlab/deepcell-tracking.git cd deepcell-tracking # install the dependencies pip install . ``` ## How to Use ```python from deepcell_tracking import CellTracker # X and y are the time-sequence data and their corresponding segmentations (labels), respectively. # model is a deepcell-tf tracking model. tracker = CellTracker(X, y, model) tracker.track_cells() # runs in place, builds tracks # Save all tracked data and lineage files to a .trk file tracker.dump('./results.trk') # Open the track file from deepcell_tracking.utils import load_trks data = load_trks('./results.trk') lineage = data['lineages'] # linage information X = data['X'] # raw X data y = data['y'] # tracked y data ``` %package help Summary: Development documents and examples for DeepCell-Tracking Provides: python3-DeepCell-Tracking-doc %description help # ![DeepCell Tracking Banner](https://raw.githubusercontent.com/vanvalenlab/deepcell-tracking/master/docs/images/DeepCell_tracking_Banner.png) [![PyPI version](https://badge.fury.io/py/DeepCell-Tracking.svg)](https://badge.fury.io/py/DeepCell-Tracking) [![Build Status](https://github.com/vanvalenlab/deepcell-tracking/workflows/build/badge.svg)](https://github.com/vanvalenlab/deepcell-tracking/actions) [![Coverage Status](https://coveralls.io/repos/github/vanvalenlab/deepcell-tracking/badge.svg?branch=master)](https://coveralls.io/github/vanvalenlab/deepcell-tracking?branch=master) `deepcell-tracking` uses deep learning models from [deepcell-tf](https://github.com/vanvalenlab/deepcell-tf) within an assignment problem framework to [track cells through time-lapse sequences](https://www.biorxiv.org/content/10.1101/803205v2) and build cell lineages. The assignment problem is solved using the [Hungarian algorithm.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747604/) ## Getting Started `deepcell-tracking` is a Python package that can be installed with `pip`: ```bash pip install deepcell-tracking ``` Or it can be installed from source: ```bash git clone https://github.com/vanvalenlab/deepcell-tracking.git cd deepcell-tracking # install the dependencies pip install . ``` ## How to Use ```python from deepcell_tracking import CellTracker # X and y are the time-sequence data and their corresponding segmentations (labels), respectively. # model is a deepcell-tf tracking model. tracker = CellTracker(X, y, model) tracker.track_cells() # runs in place, builds tracks # Save all tracked data and lineage files to a .trk file tracker.dump('./results.trk') # Open the track file from deepcell_tracking.utils import load_trks data = load_trks('./results.trk') lineage = data['lineages'] # linage information X = data['X'] # raw X data y = data['y'] # tracked y data ``` %prep %autosetup -n DeepCell-Tracking-0.6.4 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-DeepCell-Tracking -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 17 2023 Python_Bot - 0.6.4-1 - Package Spec generated