%global _empty_manifest_terminate_build 0 Name: python-ridgeplot Version: 0.1.21 Release: 1 Summary: Beautiful ridgeline plots in python License: MIT URL: https://github.com/tpvasconcelos/ridgeplot Source0: https://mirrors.nju.edu.cn/pypi/web/packages/53/26/69baca59a24b98054a742575b24c064bca717a30134401bceecae4c14564/ridgeplot-0.1.21.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-plotly Requires: python3-statsmodels %description

ridgeplot - beautiful ridgeline plots in Python

ridgeplot: beautiful ridgeline plots in Python

PyPI - Latest Release PyPI - Python Versions PyPI - Package Status PyPI - License
GitHub CI Docs codecov CodeFactor Codacy code quality

______________________________________________________________________ The `ridgeplot` python library aims at providing a simple API for plotting beautiful [ridgeline plots](https://www.data-to-viz.com/graph/ridgeline.html) within the extensive [Plotly](https://plotly.com/python/) interactive graphing environment. Bumper stickers: - Do one thing, and do it well! - Use sensible defaults, but allow for extensive configuration! ## How to get it? The source code is currently hosted on GitHub at: Install and update using [pip](https://pip.pypa.io/en/stable/quickstart/): ```shell pip install -U ridgeplot ``` ### Dependencies - [plotly](https://plotly.com/) - the interactive graphing backend that powers `ridgeplot` - [statsmodels](https://www.statsmodels.org/) - Used for Kernel Density Estimation (KDE) - [numpy](https://numpy.org/) - Supporting library for multi-dimensional array manipulations ## How to use it? The official docs can be found at: https://ridgeplot.readthedocs.io/en/stable/ ### Sensible defaults ```python import numpy as np from ridgeplot import ridgeplot # Put your real samples here... np.random.seed(0) synthetic_samples = [np.random.normal(n / 1.2, size=600) for n in range(9, 0, -1)] # Call the `ridgeplot()` helper, packed with sensible defaults fig = ridgeplot(samples=synthetic_samples) # The returned Plotly `Figure` is still fully customizable fig.update_layout(height=500, width=800) # show us the work! fig.show() ``` ![ridgeline plot example using the ridgeplot Python library](docs/_static/img/example_simple.png) ### Fully configurable In this example, we will be replicating the first ridgeline plot example in [this _from Data to Viz_ post](https://www.data-to-viz.com/graph/ridgeline.html), which uses the _probly_ dataset. You can find the _plobly_ dataset on multiple sources like in the [bokeh](https://raw.githubusercontent.com/bokeh/bokeh/17a0b288052afac80ebcf0aa74e3915452fce3ca/src/bokeh/sampledata/_data/probly.csv) python interactive visualization library. I'll be using the [same source](https://raw.githubusercontent.com/zonination/perceptions/51207062aa173777264d3acce0131e1e2456d966/probly.csv) used in the original post. ```python import numpy as np from ridgeplot import ridgeplot from ridgeplot.datasets import load_probly # Load the probly dataset df = load_probly() # Let's grab only the subset of columns displayed in the example column_names = [ "Almost Certainly", "Very Good Chance", "We Believe", "Likely", "About Even", "Little Chance", "Chances Are Slight", "Almost No Chance", ] # fmt: skip df = df[column_names] # Not only does 'ridgeplot(...)' come configured with sensible defaults # but is also fully configurable to your own style and preference! fig = ridgeplot( samples=df.values.T, bandwidth=4, kde_points=np.linspace(-12.5, 112.5, 400), colorscale="viridis", colormode="index", coloralpha=0.6, labels=column_names, spacing=5 / 9, ) # Again, update the figure layout to your liking here fig.update_layout( title="What probability would you assign to the phrase “Highly likely”?", height=650, width=800, plot_bgcolor="rgba(255, 255, 255, 0.0)", xaxis_gridcolor="rgba(0, 0, 0, 0.1)", yaxis_gridcolor="rgba(0, 0, 0, 0.1)", yaxis_title="Assigned Probability (%)", ) fig.show() ``` ![ridgeline plot of the probly dataset using the ridgeplot Python library](docs/_static/img/example_probly.png) %package -n python3-ridgeplot Summary: Beautiful ridgeline plots in python Provides: python-ridgeplot BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-ridgeplot

ridgeplot - beautiful ridgeline plots in Python

ridgeplot: beautiful ridgeline plots in Python

PyPI - Latest Release PyPI - Python Versions PyPI - Package Status PyPI - License
GitHub CI Docs codecov CodeFactor Codacy code quality

______________________________________________________________________ The `ridgeplot` python library aims at providing a simple API for plotting beautiful [ridgeline plots](https://www.data-to-viz.com/graph/ridgeline.html) within the extensive [Plotly](https://plotly.com/python/) interactive graphing environment. Bumper stickers: - Do one thing, and do it well! - Use sensible defaults, but allow for extensive configuration! ## How to get it? The source code is currently hosted on GitHub at: Install and update using [pip](https://pip.pypa.io/en/stable/quickstart/): ```shell pip install -U ridgeplot ``` ### Dependencies - [plotly](https://plotly.com/) - the interactive graphing backend that powers `ridgeplot` - [statsmodels](https://www.statsmodels.org/) - Used for Kernel Density Estimation (KDE) - [numpy](https://numpy.org/) - Supporting library for multi-dimensional array manipulations ## How to use it? The official docs can be found at: https://ridgeplot.readthedocs.io/en/stable/ ### Sensible defaults ```python import numpy as np from ridgeplot import ridgeplot # Put your real samples here... np.random.seed(0) synthetic_samples = [np.random.normal(n / 1.2, size=600) for n in range(9, 0, -1)] # Call the `ridgeplot()` helper, packed with sensible defaults fig = ridgeplot(samples=synthetic_samples) # The returned Plotly `Figure` is still fully customizable fig.update_layout(height=500, width=800) # show us the work! fig.show() ``` ![ridgeline plot example using the ridgeplot Python library](docs/_static/img/example_simple.png) ### Fully configurable In this example, we will be replicating the first ridgeline plot example in [this _from Data to Viz_ post](https://www.data-to-viz.com/graph/ridgeline.html), which uses the _probly_ dataset. You can find the _plobly_ dataset on multiple sources like in the [bokeh](https://raw.githubusercontent.com/bokeh/bokeh/17a0b288052afac80ebcf0aa74e3915452fce3ca/src/bokeh/sampledata/_data/probly.csv) python interactive visualization library. I'll be using the [same source](https://raw.githubusercontent.com/zonination/perceptions/51207062aa173777264d3acce0131e1e2456d966/probly.csv) used in the original post. ```python import numpy as np from ridgeplot import ridgeplot from ridgeplot.datasets import load_probly # Load the probly dataset df = load_probly() # Let's grab only the subset of columns displayed in the example column_names = [ "Almost Certainly", "Very Good Chance", "We Believe", "Likely", "About Even", "Little Chance", "Chances Are Slight", "Almost No Chance", ] # fmt: skip df = df[column_names] # Not only does 'ridgeplot(...)' come configured with sensible defaults # but is also fully configurable to your own style and preference! fig = ridgeplot( samples=df.values.T, bandwidth=4, kde_points=np.linspace(-12.5, 112.5, 400), colorscale="viridis", colormode="index", coloralpha=0.6, labels=column_names, spacing=5 / 9, ) # Again, update the figure layout to your liking here fig.update_layout( title="What probability would you assign to the phrase “Highly likely”?", height=650, width=800, plot_bgcolor="rgba(255, 255, 255, 0.0)", xaxis_gridcolor="rgba(0, 0, 0, 0.1)", yaxis_gridcolor="rgba(0, 0, 0, 0.1)", yaxis_title="Assigned Probability (%)", ) fig.show() ``` ![ridgeline plot of the probly dataset using the ridgeplot Python library](docs/_static/img/example_probly.png) %package help Summary: Development documents and examples for ridgeplot Provides: python3-ridgeplot-doc %description help

ridgeplot - beautiful ridgeline plots in Python

ridgeplot: beautiful ridgeline plots in Python

PyPI - Latest Release PyPI - Python Versions PyPI - Package Status PyPI - License
GitHub CI Docs codecov CodeFactor Codacy code quality

______________________________________________________________________ The `ridgeplot` python library aims at providing a simple API for plotting beautiful [ridgeline plots](https://www.data-to-viz.com/graph/ridgeline.html) within the extensive [Plotly](https://plotly.com/python/) interactive graphing environment. Bumper stickers: - Do one thing, and do it well! - Use sensible defaults, but allow for extensive configuration! ## How to get it? The source code is currently hosted on GitHub at: Install and update using [pip](https://pip.pypa.io/en/stable/quickstart/): ```shell pip install -U ridgeplot ``` ### Dependencies - [plotly](https://plotly.com/) - the interactive graphing backend that powers `ridgeplot` - [statsmodels](https://www.statsmodels.org/) - Used for Kernel Density Estimation (KDE) - [numpy](https://numpy.org/) - Supporting library for multi-dimensional array manipulations ## How to use it? The official docs can be found at: https://ridgeplot.readthedocs.io/en/stable/ ### Sensible defaults ```python import numpy as np from ridgeplot import ridgeplot # Put your real samples here... np.random.seed(0) synthetic_samples = [np.random.normal(n / 1.2, size=600) for n in range(9, 0, -1)] # Call the `ridgeplot()` helper, packed with sensible defaults fig = ridgeplot(samples=synthetic_samples) # The returned Plotly `Figure` is still fully customizable fig.update_layout(height=500, width=800) # show us the work! fig.show() ``` ![ridgeline plot example using the ridgeplot Python library](docs/_static/img/example_simple.png) ### Fully configurable In this example, we will be replicating the first ridgeline plot example in [this _from Data to Viz_ post](https://www.data-to-viz.com/graph/ridgeline.html), which uses the _probly_ dataset. You can find the _plobly_ dataset on multiple sources like in the [bokeh](https://raw.githubusercontent.com/bokeh/bokeh/17a0b288052afac80ebcf0aa74e3915452fce3ca/src/bokeh/sampledata/_data/probly.csv) python interactive visualization library. I'll be using the [same source](https://raw.githubusercontent.com/zonination/perceptions/51207062aa173777264d3acce0131e1e2456d966/probly.csv) used in the original post. ```python import numpy as np from ridgeplot import ridgeplot from ridgeplot.datasets import load_probly # Load the probly dataset df = load_probly() # Let's grab only the subset of columns displayed in the example column_names = [ "Almost Certainly", "Very Good Chance", "We Believe", "Likely", "About Even", "Little Chance", "Chances Are Slight", "Almost No Chance", ] # fmt: skip df = df[column_names] # Not only does 'ridgeplot(...)' come configured with sensible defaults # but is also fully configurable to your own style and preference! fig = ridgeplot( samples=df.values.T, bandwidth=4, kde_points=np.linspace(-12.5, 112.5, 400), colorscale="viridis", colormode="index", coloralpha=0.6, labels=column_names, spacing=5 / 9, ) # Again, update the figure layout to your liking here fig.update_layout( title="What probability would you assign to the phrase “Highly likely”?", height=650, width=800, plot_bgcolor="rgba(255, 255, 255, 0.0)", xaxis_gridcolor="rgba(0, 0, 0, 0.1)", yaxis_gridcolor="rgba(0, 0, 0, 0.1)", yaxis_title="Assigned Probability (%)", ) fig.show() ``` ![ridgeline plot of the probly dataset using the ridgeplot Python library](docs/_static/img/example_probly.png) %prep %autosetup -n ridgeplot-0.1.21 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-ridgeplot -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 29 2023 Python_Bot - 0.1.21-1 - Package Spec generated