%global _empty_manifest_terminate_build 0 Name: python-epitoolkit Version: 0.2.6 Release: 1 Summary: EpiToolkit is a set of tools useful in the analysis of data from EPIC / 450K microarrays. License: MIT URL: https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a0/9e/d65d7b009fe2454a0db42cd416c3d199511450af9c58745d01c3c679507b/epitoolkit-0.2.6.tar.gz BuildArch: noarch Requires: python3-pandas Requires: python3-numpy Requires: python3-seaborn Requires: python3-matplotlib Requires: python3-plotly Requires: python3-scipy Requires: python3-tqdm Requires: python3-pathlib Requires: python3-autopep8 Requires: python3-Sphinx %description # EpiGenToolKit Is a small library created to deal with data from `EPIC / 450K` microarrays. The tool allows to: a) Simply visualize methylation levels of specific CpG or genomic region. b) Perform enrichment analysis of a selected subset of CpG against the whole array. In this type of analysis expected frequency [%] (based on mynorm) of genomic regions is compared to observed (based on provided cpgs set), results are comapred using chi-square test. # How to start? a) using env ``` python -m venv env source env/bin/activate # Windows: env\Scripts\activate pip install epitoolkit ``` b) using poetry ``` poetry new . poetry add epitoolkit ``` c) or just clone the repository: ``` git clone https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit.git cd EpiGenToolKit && poetry install ``` # How to use? ## Visualization To visualize single **CpG** site or specific genomic region initialize **Visualise** object: ``` from epitoolkit.tools import Visualize viz = Visualize(manifest=, # path to manifest file mynorm=, # path to mynorm file poi=, # path to poi file poi_col= # name of column containing sample phenotype skiprows=0) # many manifest contains headers, set skiprows argument to ignore them. ``` all files must have *.csv extension, mynorm must contain sample names as `columns` and cpgs as `rows`, the proper EPIC manifest may be downloaded from [here](https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html), poi file must contain sample names `rows` (only samples overlapped between poi and mynorm will be used) and POI (phenotype of interest) column containing names of phenotype e.g. Control and Case. To visualize single CpG: ``` viz.plot_CpG("cg07881041", # cpg ID static=False, # plot type static / interactive [default] height=400, # plot size [default] width=700, # plot size [default] title="", # plot title [default] legend_title="", # legend title [default] font_size=22, # font size [default] show_legend=True, # False to hide legedn [default] x_axis_label="CpG", # x axsis label [default] category_order=["Cohort 1", "Cohort 2], # box order [default] y_axis_label="beta-values") # y axis label [default] ``` > NOTE: most of those arguments are default! So you don't need to specify most of them! ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot1.png?raw=true) To visualize specific genomic region: ``` vis.plot_Range(chr=17, start=5999, end=7000) ``` > NOTE: please note that all arguments available in `viz.plot_CpG` are also in `plot_Range` ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot2.png?raw=true) To visualize specific CpGs in genomic order, instead of whole region, just pass collection of CpGs: ``` viz.plot_Range(cpgs=["cg04594855", "cg19812938", "cg05451842"] ``` ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot3.png?raw=true) To save plots use *export* argument, for instance: ``` viz.plot_Range(chr=17, start=5999, end=6770, export="plot.html") # if static = False only html format is supported if static = True, use png extension. ``` ### Enrichment analysis To perform enrichment analysis against any type of genomic region specified in the manifest file, the user needs to initialize **EnrichemntAnalysis** object. ``` from src.epitoolkit.tools import EnrichmentAnalysis ea = EnrichmentAnalysis(manifest=, mynorm=) ``` or if `Visualize` object already exists use `load` method (this approach makes you not have to load the data again): ``` ea = EnrichmentAnalysis.load() ``` To start analysis: ``` ea.enrichmentAnalysis(categories_to_analyse=["UCSC_RefGene_Group", "Relation_to_UCSC_CpG_Island"], # list of categories to analyse cpgs=cpgs) # list of cpgs to analyse against background ``` ![examplePlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot4.png?raw=true) %package -n python3-epitoolkit Summary: EpiToolkit is a set of tools useful in the analysis of data from EPIC / 450K microarrays. Provides: python-epitoolkit BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-epitoolkit # EpiGenToolKit Is a small library created to deal with data from `EPIC / 450K` microarrays. The tool allows to: a) Simply visualize methylation levels of specific CpG or genomic region. b) Perform enrichment analysis of a selected subset of CpG against the whole array. In this type of analysis expected frequency [%] (based on mynorm) of genomic regions is compared to observed (based on provided cpgs set), results are comapred using chi-square test. # How to start? a) using env ``` python -m venv env source env/bin/activate # Windows: env\Scripts\activate pip install epitoolkit ``` b) using poetry ``` poetry new . poetry add epitoolkit ``` c) or just clone the repository: ``` git clone https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit.git cd EpiGenToolKit && poetry install ``` # How to use? ## Visualization To visualize single **CpG** site or specific genomic region initialize **Visualise** object: ``` from epitoolkit.tools import Visualize viz = Visualize(manifest=, # path to manifest file mynorm=, # path to mynorm file poi=, # path to poi file poi_col= # name of column containing sample phenotype skiprows=0) # many manifest contains headers, set skiprows argument to ignore them. ``` all files must have *.csv extension, mynorm must contain sample names as `columns` and cpgs as `rows`, the proper EPIC manifest may be downloaded from [here](https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html), poi file must contain sample names `rows` (only samples overlapped between poi and mynorm will be used) and POI (phenotype of interest) column containing names of phenotype e.g. Control and Case. To visualize single CpG: ``` viz.plot_CpG("cg07881041", # cpg ID static=False, # plot type static / interactive [default] height=400, # plot size [default] width=700, # plot size [default] title="", # plot title [default] legend_title="", # legend title [default] font_size=22, # font size [default] show_legend=True, # False to hide legedn [default] x_axis_label="CpG", # x axsis label [default] category_order=["Cohort 1", "Cohort 2], # box order [default] y_axis_label="beta-values") # y axis label [default] ``` > NOTE: most of those arguments are default! So you don't need to specify most of them! ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot1.png?raw=true) To visualize specific genomic region: ``` vis.plot_Range(chr=17, start=5999, end=7000) ``` > NOTE: please note that all arguments available in `viz.plot_CpG` are also in `plot_Range` ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot2.png?raw=true) To visualize specific CpGs in genomic order, instead of whole region, just pass collection of CpGs: ``` viz.plot_Range(cpgs=["cg04594855", "cg19812938", "cg05451842"] ``` ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot3.png?raw=true) To save plots use *export* argument, for instance: ``` viz.plot_Range(chr=17, start=5999, end=6770, export="plot.html") # if static = False only html format is supported if static = True, use png extension. ``` ### Enrichment analysis To perform enrichment analysis against any type of genomic region specified in the manifest file, the user needs to initialize **EnrichemntAnalysis** object. ``` from src.epitoolkit.tools import EnrichmentAnalysis ea = EnrichmentAnalysis(manifest=, mynorm=) ``` or if `Visualize` object already exists use `load` method (this approach makes you not have to load the data again): ``` ea = EnrichmentAnalysis.load() ``` To start analysis: ``` ea.enrichmentAnalysis(categories_to_analyse=["UCSC_RefGene_Group", "Relation_to_UCSC_CpG_Island"], # list of categories to analyse cpgs=cpgs) # list of cpgs to analyse against background ``` ![examplePlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot4.png?raw=true) %package help Summary: Development documents and examples for epitoolkit Provides: python3-epitoolkit-doc %description help # EpiGenToolKit Is a small library created to deal with data from `EPIC / 450K` microarrays. The tool allows to: a) Simply visualize methylation levels of specific CpG or genomic region. b) Perform enrichment analysis of a selected subset of CpG against the whole array. In this type of analysis expected frequency [%] (based on mynorm) of genomic regions is compared to observed (based on provided cpgs set), results are comapred using chi-square test. # How to start? a) using env ``` python -m venv env source env/bin/activate # Windows: env\Scripts\activate pip install epitoolkit ``` b) using poetry ``` poetry new . poetry add epitoolkit ``` c) or just clone the repository: ``` git clone https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit.git cd EpiGenToolKit && poetry install ``` # How to use? ## Visualization To visualize single **CpG** site or specific genomic region initialize **Visualise** object: ``` from epitoolkit.tools import Visualize viz = Visualize(manifest=, # path to manifest file mynorm=, # path to mynorm file poi=, # path to poi file poi_col= # name of column containing sample phenotype skiprows=0) # many manifest contains headers, set skiprows argument to ignore them. ``` all files must have *.csv extension, mynorm must contain sample names as `columns` and cpgs as `rows`, the proper EPIC manifest may be downloaded from [here](https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html), poi file must contain sample names `rows` (only samples overlapped between poi and mynorm will be used) and POI (phenotype of interest) column containing names of phenotype e.g. Control and Case. To visualize single CpG: ``` viz.plot_CpG("cg07881041", # cpg ID static=False, # plot type static / interactive [default] height=400, # plot size [default] width=700, # plot size [default] title="", # plot title [default] legend_title="", # legend title [default] font_size=22, # font size [default] show_legend=True, # False to hide legedn [default] x_axis_label="CpG", # x axsis label [default] category_order=["Cohort 1", "Cohort 2], # box order [default] y_axis_label="beta-values") # y axis label [default] ``` > NOTE: most of those arguments are default! So you don't need to specify most of them! ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot1.png?raw=true) To visualize specific genomic region: ``` vis.plot_Range(chr=17, start=5999, end=7000) ``` > NOTE: please note that all arguments available in `viz.plot_CpG` are also in `plot_Range` ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot2.png?raw=true) To visualize specific CpGs in genomic order, instead of whole region, just pass collection of CpGs: ``` viz.plot_Range(cpgs=["cg04594855", "cg19812938", "cg05451842"] ``` ![CpGPlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot3.png?raw=true) To save plots use *export* argument, for instance: ``` viz.plot_Range(chr=17, start=5999, end=6770, export="plot.html") # if static = False only html format is supported if static = True, use png extension. ``` ### Enrichment analysis To perform enrichment analysis against any type of genomic region specified in the manifest file, the user needs to initialize **EnrichemntAnalysis** object. ``` from src.epitoolkit.tools import EnrichmentAnalysis ea = EnrichmentAnalysis(manifest=, mynorm=) ``` or if `Visualize` object already exists use `load` method (this approach makes you not have to load the data again): ``` ea = EnrichmentAnalysis.load() ``` To start analysis: ``` ea.enrichmentAnalysis(categories_to_analyse=["UCSC_RefGene_Group", "Relation_to_UCSC_CpG_Island"], # list of categories to analyse cpgs=cpgs) # list of cpgs to analyse against background ``` ![examplePlot](https://github.com/ClinicalEpigeneticsLaboratory/EpiGenToolKit/blob/main/Plots/Plot4.png?raw=true) %prep %autosetup -n epitoolkit-0.2.6 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-epitoolkit -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon May 29 2023 Python_Bot - 0.2.6-1 - Package Spec generated