%global _empty_manifest_terminate_build 0 Name: python-bert-multitask-learning Version: 0.7.0 Release: 1 Summary: BERT for Multi-task Learning License: MIT URL: https://github.com/JayYip/bert-multitask-learning Source0: https://mirrors.nju.edu.cn/pypi/web/packages/55/9d/12581fd57c88e19308746a67f1d76f6356c91cbcbd1d123ec346c4e35620/bert_multitask_learning-0.7.0.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-joblib Requires: python3-tqdm Requires: python3-six Requires: python3-pandas Requires: python3-setuptools Requires: python3-nltk Requires: python3-scikit-learn Requires: python3-transformers Requires: python3-tensorflow-addons %description # Bert for Multi-task Learning [python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [![tensorflow](https://img.shields.io/badge/tensorflow-1.13.1-green.svg)](https://www.tensorflow.org/) [![PyPI version fury.io](https://badge.fury.io/py/ansicolortags.svg)](https://pypi.python.org/pypi/bert-multitask-learning/) [![PyPI license](https://img.shields.io/pypi/l/ansicolortags.svg)](https://pypi.python.org/pypi/bert-multitask-learning/) [中文文档](#Bert多任务学习) **Note: Since 0.4.0, tf version >= 2.1 is required.** ## Install ``` pip install bert-multitask-learning ``` ## What is it This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**. ## Why do I need this In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code. To sum up, compared to the original bert repo, this repo has the following features: 1. Multimodal multi-task learning(major reason of re-writing the majority of code). 2. Multiple GPU training 3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder). ## What type of problems are supported? - Masked LM and next sentence prediction Pre-train(pretrain) - Classification(cls) - Sequence Labeling(seq_tag) - Multi-Label Classification(multi_cls) - Multi-modal Mask LM(mask_lm) ## How to run pre-defined problems There are two types of chaining operations can be used to chain problems. - `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time. - `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance. For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch. Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models. # Bert多任务学习 **注意:版本0.4.0后要求tf>=2.1** ## 安装 ``` pip install bert-multitask-learning ``` ## 这是什么 这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目. ## 我为什么需要这个项目 在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码. 因此, 和原来的BERT相比, 这个项目具有以下特点: 1. 多任务学习 2. 多GPU训练 3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder) ## 目前支持的任务类型 - Masked LM和next sentence prediction预训练(pretrain) - 单标签分类(cls) - 序列标注(seq_tag) - 多标签分类(multi_cls) - 多模态Mask LM(mask_lm) ## 如何运行预定义任务 可以用两种方法来将多个任务连接起来. - `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练. - `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练. 例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0. 训练, eval和导出模型请见[notebooks](notebooks/) %package -n python3-bert-multitask-learning Summary: BERT for Multi-task Learning Provides: python-bert-multitask-learning BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-bert-multitask-learning # Bert for Multi-task Learning [python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [![tensorflow](https://img.shields.io/badge/tensorflow-1.13.1-green.svg)](https://www.tensorflow.org/) [![PyPI version fury.io](https://badge.fury.io/py/ansicolortags.svg)](https://pypi.python.org/pypi/bert-multitask-learning/) [![PyPI license](https://img.shields.io/pypi/l/ansicolortags.svg)](https://pypi.python.org/pypi/bert-multitask-learning/) [中文文档](#Bert多任务学习) **Note: Since 0.4.0, tf version >= 2.1 is required.** ## Install ``` pip install bert-multitask-learning ``` ## What is it This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**. ## Why do I need this In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code. To sum up, compared to the original bert repo, this repo has the following features: 1. Multimodal multi-task learning(major reason of re-writing the majority of code). 2. Multiple GPU training 3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder). ## What type of problems are supported? - Masked LM and next sentence prediction Pre-train(pretrain) - Classification(cls) - Sequence Labeling(seq_tag) - Multi-Label Classification(multi_cls) - Multi-modal Mask LM(mask_lm) ## How to run pre-defined problems There are two types of chaining operations can be used to chain problems. - `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time. - `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance. For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch. Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models. # Bert多任务学习 **注意:版本0.4.0后要求tf>=2.1** ## 安装 ``` pip install bert-multitask-learning ``` ## 这是什么 这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目. ## 我为什么需要这个项目 在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码. 因此, 和原来的BERT相比, 这个项目具有以下特点: 1. 多任务学习 2. 多GPU训练 3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder) ## 目前支持的任务类型 - Masked LM和next sentence prediction预训练(pretrain) - 单标签分类(cls) - 序列标注(seq_tag) - 多标签分类(multi_cls) - 多模态Mask LM(mask_lm) ## 如何运行预定义任务 可以用两种方法来将多个任务连接起来. - `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练. - `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练. 例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0. 训练, eval和导出模型请见[notebooks](notebooks/) %package help Summary: Development documents and examples for bert-multitask-learning Provides: python3-bert-multitask-learning-doc %description help # Bert for Multi-task Learning [python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [![tensorflow](https://img.shields.io/badge/tensorflow-1.13.1-green.svg)](https://www.tensorflow.org/) [![PyPI version fury.io](https://badge.fury.io/py/ansicolortags.svg)](https://pypi.python.org/pypi/bert-multitask-learning/) [![PyPI license](https://img.shields.io/pypi/l/ansicolortags.svg)](https://pypi.python.org/pypi/bert-multitask-learning/) [中文文档](#Bert多任务学习) **Note: Since 0.4.0, tf version >= 2.1 is required.** ## Install ``` pip install bert-multitask-learning ``` ## What is it This a project that uses transformers(based on huggingface transformers) to do **multi-modal multi-task learning**. ## Why do I need this In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code. To sum up, compared to the original bert repo, this repo has the following features: 1. Multimodal multi-task learning(major reason of re-writing the majority of code). 2. Multiple GPU training 3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder). ## What type of problems are supported? - Masked LM and next sentence prediction Pre-train(pretrain) - Classification(cls) - Sequence Labeling(seq_tag) - Multi-Label Classification(multi_cls) - Multi-modal Mask LM(mask_lm) ## How to run pre-defined problems There are two types of chaining operations can be used to chain problems. - `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time. - `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance. For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch. Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models. # Bert多任务学习 **注意:版本0.4.0后要求tf>=2.1** ## 安装 ``` pip install bert-multitask-learning ``` ## 这是什么 这是利用transformer(基于huggingface transformers)进行**多模态多任务学习**的项目. ## 我为什么需要这个项目 在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码. 因此, 和原来的BERT相比, 这个项目具有以下特点: 1. 多任务学习 2. 多GPU训练 3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder) ## 目前支持的任务类型 - Masked LM和next sentence prediction预训练(pretrain) - 单标签分类(cls) - 序列标注(seq_tag) - 多标签分类(multi_cls) - 多模态Mask LM(mask_lm) ## 如何运行预定义任务 可以用两种方法来将多个任务连接起来. - `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练. - `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练. 例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0. 训练, eval和导出模型请见[notebooks](notebooks/) %prep %autosetup -n bert-multitask-learning-0.7.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-bert-multitask-learning -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 0.7.0-1 - Package Spec generated