%global _empty_manifest_terminate_build 0 Name: python-pandas-ml Version: 0.6.1 Release: 1 Summary: pandas, scikit-learn and xgboost integration License: BSD URL: http://pandas-ml.readthedocs.org/en/stable Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ac/69/f63b234546e39558e8121980daaf7389e52554a608da50005f52dc14f53f/pandas_ml-0.6.1.tar.gz BuildArch: noarch Requires: python3-pandas Requires: python3-enum34 %description Overview ~~~~~~~~ `pandas `_, `scikit-learn `_ and `xgboost `_ integration. Installation ~~~~~~~~~~~~ $ pip install pandas_ml Documentation ~~~~~~~~~~~~~ http://pandas-ml.readthedocs.org/en/stable/ Example ~~~~~~~ >>> import pandas_ml as pdml >>> import sklearn.datasets as datasets # create ModelFrame instance from sklearn.datasets >>> df = pdml.ModelFrame(datasets.load_digits()) >>> type(df) # binarize data (features), not touching target >>> df.data = df.data.preprocessing.binarize() >>> df.head() .target 0 1 2 3 4 5 6 7 8 ... 54 55 56 57 58 59 60 61 62 63 0 0 0 0 1 1 1 1 0 0 0 ... 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 ... 0 0 0 0 0 1 1 1 0 0 2 2 0 0 0 1 1 1 0 0 0 ... 1 0 0 0 0 1 1 1 1 0 3 3 0 0 1 1 1 1 0 0 0 ... 1 0 0 0 1 1 1 1 0 0 4 4 0 0 0 1 1 0 0 0 0 ... 0 0 0 0 0 1 1 1 0 0 [5 rows x 65 columns] # split to training and test data >>> train_df, test_df = df.model_selection.train_test_split() # create estimator (accessor is mapped to sklearn namespace) >>> estimator = df.svm.LinearSVC() # fit to training data >>> train_df.fit(estimator) # predict test data >>> test_df.predict(estimator) 0 4 1 2 2 7 448 5 449 8 Length: 450, dtype: int64 # Evaluate the result >>> test_df.metrics.confusion_matrix() Predicted 0 1 2 3 4 5 6 7 8 9 Target 0 52 0 0 0 0 0 0 0 0 0 1 0 37 1 0 0 1 0 0 3 3 2 0 2 48 1 0 0 0 1 1 0 3 1 1 0 44 0 1 0 0 3 1 4 1 0 0 0 43 0 1 0 0 0 5 0 1 0 0 0 39 0 0 0 0 6 0 1 0 0 1 0 35 0 0 0 7 0 0 0 0 2 0 0 42 1 0 8 0 2 1 0 1 0 0 0 33 1 9 0 2 1 2 0 0 0 0 1 38 Supported Packages ~~~~~~~~~~~~~~~~~~ - ``scikit-learn`` - ``patsy`` - ``xgboost`` %package -n python3-pandas-ml Summary: pandas, scikit-learn and xgboost integration Provides: python-pandas-ml BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pandas-ml Overview ~~~~~~~~ `pandas `_, `scikit-learn `_ and `xgboost `_ integration. Installation ~~~~~~~~~~~~ $ pip install pandas_ml Documentation ~~~~~~~~~~~~~ http://pandas-ml.readthedocs.org/en/stable/ Example ~~~~~~~ >>> import pandas_ml as pdml >>> import sklearn.datasets as datasets # create ModelFrame instance from sklearn.datasets >>> df = pdml.ModelFrame(datasets.load_digits()) >>> type(df) # binarize data (features), not touching target >>> df.data = df.data.preprocessing.binarize() >>> df.head() .target 0 1 2 3 4 5 6 7 8 ... 54 55 56 57 58 59 60 61 62 63 0 0 0 0 1 1 1 1 0 0 0 ... 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 ... 0 0 0 0 0 1 1 1 0 0 2 2 0 0 0 1 1 1 0 0 0 ... 1 0 0 0 0 1 1 1 1 0 3 3 0 0 1 1 1 1 0 0 0 ... 1 0 0 0 1 1 1 1 0 0 4 4 0 0 0 1 1 0 0 0 0 ... 0 0 0 0 0 1 1 1 0 0 [5 rows x 65 columns] # split to training and test data >>> train_df, test_df = df.model_selection.train_test_split() # create estimator (accessor is mapped to sklearn namespace) >>> estimator = df.svm.LinearSVC() # fit to training data >>> train_df.fit(estimator) # predict test data >>> test_df.predict(estimator) 0 4 1 2 2 7 448 5 449 8 Length: 450, dtype: int64 # Evaluate the result >>> test_df.metrics.confusion_matrix() Predicted 0 1 2 3 4 5 6 7 8 9 Target 0 52 0 0 0 0 0 0 0 0 0 1 0 37 1 0 0 1 0 0 3 3 2 0 2 48 1 0 0 0 1 1 0 3 1 1 0 44 0 1 0 0 3 1 4 1 0 0 0 43 0 1 0 0 0 5 0 1 0 0 0 39 0 0 0 0 6 0 1 0 0 1 0 35 0 0 0 7 0 0 0 0 2 0 0 42 1 0 8 0 2 1 0 1 0 0 0 33 1 9 0 2 1 2 0 0 0 0 1 38 Supported Packages ~~~~~~~~~~~~~~~~~~ - ``scikit-learn`` - ``patsy`` - ``xgboost`` %package help Summary: Development documents and examples for pandas-ml Provides: python3-pandas-ml-doc %description help Overview ~~~~~~~~ `pandas `_, `scikit-learn `_ and `xgboost `_ integration. Installation ~~~~~~~~~~~~ $ pip install pandas_ml Documentation ~~~~~~~~~~~~~ http://pandas-ml.readthedocs.org/en/stable/ Example ~~~~~~~ >>> import pandas_ml as pdml >>> import sklearn.datasets as datasets # create ModelFrame instance from sklearn.datasets >>> df = pdml.ModelFrame(datasets.load_digits()) >>> type(df) # binarize data (features), not touching target >>> df.data = df.data.preprocessing.binarize() >>> df.head() .target 0 1 2 3 4 5 6 7 8 ... 54 55 56 57 58 59 60 61 62 63 0 0 0 0 1 1 1 1 0 0 0 ... 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 ... 0 0 0 0 0 1 1 1 0 0 2 2 0 0 0 1 1 1 0 0 0 ... 1 0 0 0 0 1 1 1 1 0 3 3 0 0 1 1 1 1 0 0 0 ... 1 0 0 0 1 1 1 1 0 0 4 4 0 0 0 1 1 0 0 0 0 ... 0 0 0 0 0 1 1 1 0 0 [5 rows x 65 columns] # split to training and test data >>> train_df, test_df = df.model_selection.train_test_split() # create estimator (accessor is mapped to sklearn namespace) >>> estimator = df.svm.LinearSVC() # fit to training data >>> train_df.fit(estimator) # predict test data >>> test_df.predict(estimator) 0 4 1 2 2 7 448 5 449 8 Length: 450, dtype: int64 # Evaluate the result >>> test_df.metrics.confusion_matrix() Predicted 0 1 2 3 4 5 6 7 8 9 Target 0 52 0 0 0 0 0 0 0 0 0 1 0 37 1 0 0 1 0 0 3 3 2 0 2 48 1 0 0 0 1 1 0 3 1 1 0 44 0 1 0 0 3 1 4 1 0 0 0 43 0 1 0 0 0 5 0 1 0 0 0 39 0 0 0 0 6 0 1 0 0 1 0 35 0 0 0 7 0 0 0 0 2 0 0 42 1 0 8 0 2 1 0 1 0 0 0 33 1 9 0 2 1 2 0 0 0 0 1 38 Supported Packages ~~~~~~~~~~~~~~~~~~ - ``scikit-learn`` - ``patsy`` - ``xgboost`` %prep %autosetup -n pandas-ml-0.6.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pandas-ml -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 0.6.1-1 - Package Spec generated