%global _empty_manifest_terminate_build 0 Name: python-pyrlprob Version: 2.0.3 Release: 1 Summary: Train Gym-derived environments in Python/C++ through Ray RLlib License: MIT License URL: https://github.com/LorenzoFederici/pyrlprob Source0: https://mirrors.nju.edu.cn/pypi/web/packages/87/90/b863fca4ffb5ea8dc8de9c8c27c15ff85488fa9c146413ea2a77659189cf/pyrlprob-2.0.3.tar.gz BuildArch: noarch %description

![GitHub Repo stars](https://img.shields.io/github/stars/LorenzoFederici/pyrlprob?style=social) ![GitHub last commit](https://img.shields.io/github/last-commit/LorenzoFederici/pyrlprob) ![GitHub Release Date](https://img.shields.io/github/release-date/LorenzoFederici/pyrlprob) ![GitHub release (latest by date)](https://img.shields.io/github/v/release/LorenzoFederici/pyrlprob) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyrlprob)
PyRLprob is an open-source python library for training, evaluation, and postprocessing of [Gym](https://gym.openai.com/)-based environments, written in Python, through [Ray-RLlib](https://docs.ray.io/en/master/rllib.html) reinforcement learning library. ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the latest stable release of pyRLprob, with all its dependencies: ```bash pip install pyrlprob ``` To test if the package is installed correctly, run the following tests: ```python from pyrlprob.tests import * test_train_py() test_train_eval_py() ``` If the code exits without errors, a folder named `results/` with the test results will be created in your current directory. ## User Guide [Latest user guide](https://drive.google.com/file/d/1bNs2g50cxtmAGhhB1_Kf3hX8pdkbCplZ/view?usp=share_link). ## Credits pyRLprob has been created by [Lorenzo Federici](https://github.com/LorenzoFederici) in 2021. For any problem, clarification or suggestion, you can contact the author at [lorenzof@arizona.edu](mailto:lorenzof@arizona.edu). ## License The package is under the [MIT](https://choosealicense.com/licenses/mit/) license. %package -n python3-pyrlprob Summary: Train Gym-derived environments in Python/C++ through Ray RLlib Provides: python-pyrlprob BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pyrlprob

![GitHub Repo stars](https://img.shields.io/github/stars/LorenzoFederici/pyrlprob?style=social) ![GitHub last commit](https://img.shields.io/github/last-commit/LorenzoFederici/pyrlprob) ![GitHub Release Date](https://img.shields.io/github/release-date/LorenzoFederici/pyrlprob) ![GitHub release (latest by date)](https://img.shields.io/github/v/release/LorenzoFederici/pyrlprob) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyrlprob)
PyRLprob is an open-source python library for training, evaluation, and postprocessing of [Gym](https://gym.openai.com/)-based environments, written in Python, through [Ray-RLlib](https://docs.ray.io/en/master/rllib.html) reinforcement learning library. ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the latest stable release of pyRLprob, with all its dependencies: ```bash pip install pyrlprob ``` To test if the package is installed correctly, run the following tests: ```python from pyrlprob.tests import * test_train_py() test_train_eval_py() ``` If the code exits without errors, a folder named `results/` with the test results will be created in your current directory. ## User Guide [Latest user guide](https://drive.google.com/file/d/1bNs2g50cxtmAGhhB1_Kf3hX8pdkbCplZ/view?usp=share_link). ## Credits pyRLprob has been created by [Lorenzo Federici](https://github.com/LorenzoFederici) in 2021. For any problem, clarification or suggestion, you can contact the author at [lorenzof@arizona.edu](mailto:lorenzof@arizona.edu). ## License The package is under the [MIT](https://choosealicense.com/licenses/mit/) license. %package help Summary: Development documents and examples for pyrlprob Provides: python3-pyrlprob-doc %description help

![GitHub Repo stars](https://img.shields.io/github/stars/LorenzoFederici/pyrlprob?style=social) ![GitHub last commit](https://img.shields.io/github/last-commit/LorenzoFederici/pyrlprob) ![GitHub Release Date](https://img.shields.io/github/release-date/LorenzoFederici/pyrlprob) ![GitHub release (latest by date)](https://img.shields.io/github/v/release/LorenzoFederici/pyrlprob) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pyrlprob)
PyRLprob is an open-source python library for training, evaluation, and postprocessing of [Gym](https://gym.openai.com/)-based environments, written in Python, through [Ray-RLlib](https://docs.ray.io/en/master/rllib.html) reinforcement learning library. ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the latest stable release of pyRLprob, with all its dependencies: ```bash pip install pyrlprob ``` To test if the package is installed correctly, run the following tests: ```python from pyrlprob.tests import * test_train_py() test_train_eval_py() ``` If the code exits without errors, a folder named `results/` with the test results will be created in your current directory. ## User Guide [Latest user guide](https://drive.google.com/file/d/1bNs2g50cxtmAGhhB1_Kf3hX8pdkbCplZ/view?usp=share_link). ## Credits pyRLprob has been created by [Lorenzo Federici](https://github.com/LorenzoFederici) in 2021. For any problem, clarification or suggestion, you can contact the author at [lorenzof@arizona.edu](mailto:lorenzof@arizona.edu). ## License The package is under the [MIT](https://choosealicense.com/licenses/mit/) license. %prep %autosetup -n pyrlprob-2.0.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pyrlprob -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 2.0.3-1 - Package Spec generated