%global _empty_manifest_terminate_build 0 Name: python-pyscenic Version: 0.12.1 Release: 1 Summary: Python implementation of the SCENIC pipeline for transcription factor inference from single-cell transcriptomics experiments. License: GPL-3.0+ URL: https://github.com/aertslab/pySCENIC Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d2/ea/109aa69d72b54ab78eb353ddc8b6ff7e78208b5d85b7d77f5d146b78681d/pyscenic-0.12.1.tar.gz BuildArch: noarch Requires: python3-ctxcore Requires: python3-cytoolz Requires: python3-multiprocessing-on-dill Requires: python3-llvmlite Requires: python3-numba Requires: python3-attrs Requires: python3-frozendict Requires: python3-numpy Requires: python3-pandas Requires: python3-numexpr Requires: python3-cloudpickle Requires: python3-dask Requires: python3-distributed Requires: python3-arboreto Requires: python3-boltons Requires: python3-setuptools Requires: python3-pyyaml Requires: python3-tqdm Requires: python3-interlap Requires: python3-umap-learn Requires: python3-loompy Requires: python3-networkx Requires: python3-scipy Requires: python3-fsspec Requires: python3-requests Requires: python3-aiohttp Requires: python3-scikit-learn %description |buildstatus|_ |pypipackage|_ |docstatus|_ pySCENIC is a lightning-fast python implementation of the SCENIC_ pipeline (Single-Cell rEgulatory Network Inference and Clustering) which enables biologists to infer transcription factors, gene regulatory networks and cell types from single-cell RNA-seq data. The pioneering work was done in R and results were published in Nature Methods [1]_. A new and comprehensive description of this Python implementation of the SCENIC pipeline is available in Nature Protocols [4]_. pySCENIC can be run on a single desktop machine but easily scales to multi-core clusters to analyze thousands of cells in no time. The latter is achieved via the dask_ framework for distributed computing [2]_. %package -n python3-pyscenic Summary: Python implementation of the SCENIC pipeline for transcription factor inference from single-cell transcriptomics experiments. Provides: python-pyscenic BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pyscenic |buildstatus|_ |pypipackage|_ |docstatus|_ pySCENIC is a lightning-fast python implementation of the SCENIC_ pipeline (Single-Cell rEgulatory Network Inference and Clustering) which enables biologists to infer transcription factors, gene regulatory networks and cell types from single-cell RNA-seq data. The pioneering work was done in R and results were published in Nature Methods [1]_. A new and comprehensive description of this Python implementation of the SCENIC pipeline is available in Nature Protocols [4]_. pySCENIC can be run on a single desktop machine but easily scales to multi-core clusters to analyze thousands of cells in no time. The latter is achieved via the dask_ framework for distributed computing [2]_. %package help Summary: Development documents and examples for pyscenic Provides: python3-pyscenic-doc %description help |buildstatus|_ |pypipackage|_ |docstatus|_ pySCENIC is a lightning-fast python implementation of the SCENIC_ pipeline (Single-Cell rEgulatory Network Inference and Clustering) which enables biologists to infer transcription factors, gene regulatory networks and cell types from single-cell RNA-seq data. The pioneering work was done in R and results were published in Nature Methods [1]_. A new and comprehensive description of this Python implementation of the SCENIC pipeline is available in Nature Protocols [4]_. pySCENIC can be run on a single desktop machine but easily scales to multi-core clusters to analyze thousands of cells in no time. The latter is achieved via the dask_ framework for distributed computing [2]_. %prep %autosetup -n pyscenic-0.12.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pyscenic -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 0.12.1-1 - Package Spec generated