%global _empty_manifest_terminate_build 0 Name: python-auto-face-recognition Version: 0.0.3 Release: 1 Summary: auto_face_recognition is Tensorflow based python library for fast face recognition License: MIT License URL: https://github.com/Dipeshpal/auto_face_recognition Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ce/80/b2bfb193f9adc38f8b60995d2c23f4746a72c2f46e33e153c31a37e5680a/auto_face_recognition-0.0.3.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-opencv-contrib-python Requires: python3-tensorflow Requires: python3-matplotlib %description # [auto_face_recognition](https://github.com/Dipeshpal/auto_face_recognition) ***Last Upadted: 19 November, 2020*** 1. What is auto_face_recognition? 2. Prerequisite 3. Getting Started- How to use it? 4. Future? ## 1. What is auto_face_recognition? It is a python library for the Face Recognition. This library make face recognition easy and simple. This library uses Tensorflow 2.0+ for the face recognition and model training. ## 2. Prerequisite- * To use it only Python (> 3.6) is required. * Recommended Python < 3.9 ## 3. Getting Started (How to use it)- ### Install the latest version- `pip install auto_face_recognition` It will install all the required package automatically, including Tensorflow Latest. ### Usage and Features- After installing the library you can import the module- 1. **Object Creation-** ``` import auto_face_recognition obj = auto_face_recognition.AutoFaceRecognition() ``` 2. **Dataset Creation-** obj.datasetcreate(haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml') ***Note:*** You need to pass the '[haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml)' and '[haarcascade_eye.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_eye.xml)' path. 3. **Model Training-** obj.face_recognition_train() 4. **Predict Faces-** # Real Time obj.predict_faces() # Single Face Recofnition obj.predict_face() **Parameters You Can Choose-** datasetcreate datasetcreate(dataset_path='datasets', class_name='Demo', haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False, save_face_only=True, no_of_samples=100, width=128, height=128, color_mode=False) """" Dataset Create by face detection :param dataset_path: str (example: 'folder_of_dataset') :param class_name: str (example: 'folder_of_dataset') :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml):param eye_detect: bool (example:True) :param save_face_only: bool (example:True) :param no_of_samples: int (example: 100) :param width: int (example: 128) :param height: int (example: 128) :param color_mode: bool (example:False):return: None """ face_recognition_train face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False): """ Train TF Keras model according to dataset path :param data_dir: str (example: 'folder_of_dataset') :param batch_size: int (example:32) :param img_height: int (example:128) :param img_width: int (example:128) :param epochs: int (example:10) :param model_path: str (example: 'model') :param pretrained: str (example: None, 'VGG16', 'ResNet50' or 'InceptionV3') :param base_model_trainable: bool (example: False (Enable if you want to train the pretrained model's layer)) :return: None """ predict_faces predict_faces(self, class_name=None, img_height=128, img_width=128, haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', color_mode=False): """ Predict Face :param class_name: Type-List (example: ['class1', 'class2'] ) :param img_height: int (example:128) :param img_width: int (example:128) :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml) :param model_path: str (example: 'model') :param color_mode: bool (example: False) :return: None """ predict_face predict_face(self, class_name=None, img_height=128, img_width=128, haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', color_mode=False, image_path='tmp.png'): """ Predict Face :param class_name: Type-List (example: ['class1', 'class2'] ) :param img_height: int (example:128) :param img_width: int (example:128) :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml) :param model_path: str (example: 'model') :param color_mode: bool (example: False) :param image_path: str (example: 'src/image_predict.png' :return: None """ ## 4. Future? Finetuning with Resnet and others. You Suggest. ### Like my work? Start the project and subscribe me on [YouTube](https://www.youtube.com/dipeshpal17). https://www.youtube.com/dipeshpal17 %package -n python3-auto-face-recognition Summary: auto_face_recognition is Tensorflow based python library for fast face recognition Provides: python-auto-face-recognition BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-auto-face-recognition # [auto_face_recognition](https://github.com/Dipeshpal/auto_face_recognition) ***Last Upadted: 19 November, 2020*** 1. What is auto_face_recognition? 2. Prerequisite 3. Getting Started- How to use it? 4. Future? ## 1. What is auto_face_recognition? It is a python library for the Face Recognition. This library make face recognition easy and simple. This library uses Tensorflow 2.0+ for the face recognition and model training. ## 2. Prerequisite- * To use it only Python (> 3.6) is required. * Recommended Python < 3.9 ## 3. Getting Started (How to use it)- ### Install the latest version- `pip install auto_face_recognition` It will install all the required package automatically, including Tensorflow Latest. ### Usage and Features- After installing the library you can import the module- 1. **Object Creation-** ``` import auto_face_recognition obj = auto_face_recognition.AutoFaceRecognition() ``` 2. **Dataset Creation-** obj.datasetcreate(haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml') ***Note:*** You need to pass the '[haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml)' and '[haarcascade_eye.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_eye.xml)' path. 3. **Model Training-** obj.face_recognition_train() 4. **Predict Faces-** # Real Time obj.predict_faces() # Single Face Recofnition obj.predict_face() **Parameters You Can Choose-** datasetcreate datasetcreate(dataset_path='datasets', class_name='Demo', haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False, save_face_only=True, no_of_samples=100, width=128, height=128, color_mode=False) """" Dataset Create by face detection :param dataset_path: str (example: 'folder_of_dataset') :param class_name: str (example: 'folder_of_dataset') :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml):param eye_detect: bool (example:True) :param save_face_only: bool (example:True) :param no_of_samples: int (example: 100) :param width: int (example: 128) :param height: int (example: 128) :param color_mode: bool (example:False):return: None """ face_recognition_train face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False): """ Train TF Keras model according to dataset path :param data_dir: str (example: 'folder_of_dataset') :param batch_size: int (example:32) :param img_height: int (example:128) :param img_width: int (example:128) :param epochs: int (example:10) :param model_path: str (example: 'model') :param pretrained: str (example: None, 'VGG16', 'ResNet50' or 'InceptionV3') :param base_model_trainable: bool (example: False (Enable if you want to train the pretrained model's layer)) :return: None """ predict_faces predict_faces(self, class_name=None, img_height=128, img_width=128, haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', color_mode=False): """ Predict Face :param class_name: Type-List (example: ['class1', 'class2'] ) :param img_height: int (example:128) :param img_width: int (example:128) :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml) :param model_path: str (example: 'model') :param color_mode: bool (example: False) :return: None """ predict_face predict_face(self, class_name=None, img_height=128, img_width=128, haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', color_mode=False, image_path='tmp.png'): """ Predict Face :param class_name: Type-List (example: ['class1', 'class2'] ) :param img_height: int (example:128) :param img_width: int (example:128) :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml) :param model_path: str (example: 'model') :param color_mode: bool (example: False) :param image_path: str (example: 'src/image_predict.png' :return: None """ ## 4. Future? Finetuning with Resnet and others. You Suggest. ### Like my work? Start the project and subscribe me on [YouTube](https://www.youtube.com/dipeshpal17). https://www.youtube.com/dipeshpal17 %package help Summary: Development documents and examples for auto-face-recognition Provides: python3-auto-face-recognition-doc %description help # [auto_face_recognition](https://github.com/Dipeshpal/auto_face_recognition) ***Last Upadted: 19 November, 2020*** 1. What is auto_face_recognition? 2. Prerequisite 3. Getting Started- How to use it? 4. Future? ## 1. What is auto_face_recognition? It is a python library for the Face Recognition. This library make face recognition easy and simple. This library uses Tensorflow 2.0+ for the face recognition and model training. ## 2. Prerequisite- * To use it only Python (> 3.6) is required. * Recommended Python < 3.9 ## 3. Getting Started (How to use it)- ### Install the latest version- `pip install auto_face_recognition` It will install all the required package automatically, including Tensorflow Latest. ### Usage and Features- After installing the library you can import the module- 1. **Object Creation-** ``` import auto_face_recognition obj = auto_face_recognition.AutoFaceRecognition() ``` 2. **Dataset Creation-** obj.datasetcreate(haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml') ***Note:*** You need to pass the '[haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml)' and '[haarcascade_eye.xml](https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_eye.xml)' path. 3. **Model Training-** obj.face_recognition_train() 4. **Predict Faces-** # Real Time obj.predict_faces() # Single Face Recofnition obj.predict_face() **Parameters You Can Choose-** datasetcreate datasetcreate(dataset_path='datasets', class_name='Demo', haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False, save_face_only=True, no_of_samples=100, width=128, height=128, color_mode=False) """" Dataset Create by face detection :param dataset_path: str (example: 'folder_of_dataset') :param class_name: str (example: 'folder_of_dataset') :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml):param eye_detect: bool (example:True) :param save_face_only: bool (example:True) :param no_of_samples: int (example: 100) :param width: int (example: 128) :param height: int (example: 128) :param color_mode: bool (example:False):return: None """ face_recognition_train face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False): """ Train TF Keras model according to dataset path :param data_dir: str (example: 'folder_of_dataset') :param batch_size: int (example:32) :param img_height: int (example:128) :param img_width: int (example:128) :param epochs: int (example:10) :param model_path: str (example: 'model') :param pretrained: str (example: None, 'VGG16', 'ResNet50' or 'InceptionV3') :param base_model_trainable: bool (example: False (Enable if you want to train the pretrained model's layer)) :return: None """ predict_faces predict_faces(self, class_name=None, img_height=128, img_width=128, haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', color_mode=False): """ Predict Face :param class_name: Type-List (example: ['class1', 'class2'] ) :param img_height: int (example:128) :param img_width: int (example:128) :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml) :param model_path: str (example: 'model') :param color_mode: bool (example: False) :return: None """ predict_face predict_face(self, class_name=None, img_height=128, img_width=128, haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', color_mode=False, image_path='tmp.png'): """ Predict Face :param class_name: Type-List (example: ['class1', 'class2'] ) :param img_height: int (example:128) :param img_width: int (example:128) :param haarcascade_path: str (example: 'haarcascade_frontalface_default.xml) :param eyecascade_path: str (example: 'haarcascade_eye.xml) :param model_path: str (example: 'model') :param color_mode: bool (example: False) :param image_path: str (example: 'src/image_predict.png' :return: None """ ## 4. Future? Finetuning with Resnet and others. You Suggest. ### Like my work? Start the project and subscribe me on [YouTube](https://www.youtube.com/dipeshpal17). https://www.youtube.com/dipeshpal17 %prep %autosetup -n auto-face-recognition-0.0.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-auto-face-recognition -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue May 30 2023 Python_Bot - 0.0.3-1 - Package Spec generated