%global _empty_manifest_terminate_build 0
Name: python-sportsdataverse
Version: 0.0.36
Release: 1
Summary: Retrieve Sports data in Python
License: MIT
URL: https://github.com/sportsdataverse/sportsdataverse-py
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/89/04/fd29099fa1ebfdf4856c5ec2cfec001217b396337716753c11bdd23480ac/sportsdataverse-0.0.36.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-tqdm
Requires: python3-beautifulsoup4
Requires: python3-inflection
Requires: python3-requests
Requires: python3-lxml
Requires: python3-pyarrow
Requires: python3-pyjanitor
Requires: python3-pyreadr
Requires: python3-scipy
Requires: python3-matplotlib
Requires: python3-attrs
Requires: python3-xgboost
Requires: python3-pytest
Requires: python3-mypy
Requires: python3-pytest-cov
Requires: python3-pytest-xdist
Requires: python3-sphinx
Requires: python3-beautifulsoup4
Requires: python3-inflection
Requires: python3-requests
Requires: python3-lxml
Requires: python3-pyarrow
Requires: python3-pyjanitor
Requires: python3-pyreadr
Requires: python3-scipy
Requires: python3-matplotlib
Requires: python3-tqdm
Requires: python3-attrs
Requires: python3-xgboost
Requires: python3-sphinx
Requires: python3-beautifulsoup4
Requires: python3-inflection
Requires: python3-requests
Requires: python3-lxml
Requires: python3-pyarrow
Requires: python3-pyjanitor
Requires: python3-pyreadr
Requires: python3-scipy
Requires: python3-matplotlib
Requires: python3-tqdm
Requires: python3-attrs
Requires: python3-xgboost
Requires: python3-pytest
Requires: python3-mypy
Requires: python3-pytest-cov
Requires: python3-pytest-xdist
%description
# sportsdataverse-py

[](https://pypi.org/project/sportsdataverse/)

[](https://twitter.com/sportsdataverse)
See [CHANGELOG.md](https://py.sportsdataverse.org/CHANGELOG) for details.
The goal of [sportsdataverse-py](https://py.sportsdataverse.org) is to provide the community with a python package for working with sports data as a companion to the [cfbfastR](https://cfbfastR.sportsdataverse.org/), [hoopR](https://hoopR.sportsdataverse.org/), and [wehoop](https://wehoop.sportsdataverse.org/) R packages. Beyond data aggregation and tidying ease, one of the multitude of services that [sportsdataverse-py](https://py.sportsdataverse.org) provides is for benchmarking open-source expected points and win probability metrics for American Football.
## Installation
sportsdataverse-py can be installed via pip:
```bash
pip install sportsdataverse
# with full dependencies
pip install sportsdataverse[all]
```
or from the repo (which may at times be more up to date):
```bash
git clone https://github.com/sportsdataverse/sportsdataverse-py
cd sportsdataverse-py
pip install -e .[all]
```
# **Our Authors**
- [Saiem Gilani](https://twitter.com/saiemgilani)
## **Citations**
To cite the [**`sportsdataverse-py`**](https://py.sportsdataverse.org) Python package in publications, use:
BibTex Citation
```bibtex
@misc{gilani_sdvpy_2021,
author = {Gilani, Saiem},
title = {sportsdataverse-py: The SportsDataverse's Python Package for Sports Data.},
url = {https://py.sportsdataverse.org},
season = {2021}
}
```
%package -n python3-sportsdataverse
Summary: Retrieve Sports data in Python
Provides: python-sportsdataverse
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-sportsdataverse
# sportsdataverse-py

[](https://pypi.org/project/sportsdataverse/)

[](https://twitter.com/sportsdataverse)
See [CHANGELOG.md](https://py.sportsdataverse.org/CHANGELOG) for details.
The goal of [sportsdataverse-py](https://py.sportsdataverse.org) is to provide the community with a python package for working with sports data as a companion to the [cfbfastR](https://cfbfastR.sportsdataverse.org/), [hoopR](https://hoopR.sportsdataverse.org/), and [wehoop](https://wehoop.sportsdataverse.org/) R packages. Beyond data aggregation and tidying ease, one of the multitude of services that [sportsdataverse-py](https://py.sportsdataverse.org) provides is for benchmarking open-source expected points and win probability metrics for American Football.
## Installation
sportsdataverse-py can be installed via pip:
```bash
pip install sportsdataverse
# with full dependencies
pip install sportsdataverse[all]
```
or from the repo (which may at times be more up to date):
```bash
git clone https://github.com/sportsdataverse/sportsdataverse-py
cd sportsdataverse-py
pip install -e .[all]
```
# **Our Authors**
- [Saiem Gilani](https://twitter.com/saiemgilani)
## **Citations**
To cite the [**`sportsdataverse-py`**](https://py.sportsdataverse.org) Python package in publications, use:
BibTex Citation
```bibtex
@misc{gilani_sdvpy_2021,
author = {Gilani, Saiem},
title = {sportsdataverse-py: The SportsDataverse's Python Package for Sports Data.},
url = {https://py.sportsdataverse.org},
season = {2021}
}
```
%package help
Summary: Development documents and examples for sportsdataverse
Provides: python3-sportsdataverse-doc
%description help
# sportsdataverse-py

[](https://pypi.org/project/sportsdataverse/)

[](https://twitter.com/sportsdataverse)
See [CHANGELOG.md](https://py.sportsdataverse.org/CHANGELOG) for details.
The goal of [sportsdataverse-py](https://py.sportsdataverse.org) is to provide the community with a python package for working with sports data as a companion to the [cfbfastR](https://cfbfastR.sportsdataverse.org/), [hoopR](https://hoopR.sportsdataverse.org/), and [wehoop](https://wehoop.sportsdataverse.org/) R packages. Beyond data aggregation and tidying ease, one of the multitude of services that [sportsdataverse-py](https://py.sportsdataverse.org) provides is for benchmarking open-source expected points and win probability metrics for American Football.
## Installation
sportsdataverse-py can be installed via pip:
```bash
pip install sportsdataverse
# with full dependencies
pip install sportsdataverse[all]
```
or from the repo (which may at times be more up to date):
```bash
git clone https://github.com/sportsdataverse/sportsdataverse-py
cd sportsdataverse-py
pip install -e .[all]
```
# **Our Authors**
- [Saiem Gilani](https://twitter.com/saiemgilani)
## **Citations**
To cite the [**`sportsdataverse-py`**](https://py.sportsdataverse.org) Python package in publications, use:
BibTex Citation
```bibtex
@misc{gilani_sdvpy_2021,
author = {Gilani, Saiem},
title = {sportsdataverse-py: The SportsDataverse's Python Package for Sports Data.},
url = {https://py.sportsdataverse.org},
season = {2021}
}
```
%prep
%autosetup -n sportsdataverse-0.0.36
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-sportsdataverse -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 31 2023 Python_Bot - 0.0.36-1
- Package Spec generated