%global _empty_manifest_terminate_build 0 Name: python-sportsdataverse Version: 0.0.36 Release: 1 Summary: Retrieve Sports data in Python License: MIT URL: https://github.com/sportsdataverse/sportsdataverse-py Source0: https://mirrors.nju.edu.cn/pypi/web/packages/89/04/fd29099fa1ebfdf4856c5ec2cfec001217b396337716753c11bdd23480ac/sportsdataverse-0.0.36.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-pandas Requires: python3-tqdm Requires: python3-beautifulsoup4 Requires: python3-inflection Requires: python3-requests Requires: python3-lxml Requires: python3-pyarrow Requires: python3-pyjanitor Requires: python3-pyreadr Requires: python3-scipy Requires: python3-matplotlib Requires: python3-attrs Requires: python3-xgboost Requires: python3-pytest Requires: python3-mypy Requires: python3-pytest-cov Requires: python3-pytest-xdist Requires: python3-sphinx Requires: python3-beautifulsoup4 Requires: python3-inflection Requires: python3-requests Requires: python3-lxml Requires: python3-pyarrow Requires: python3-pyjanitor Requires: python3-pyreadr Requires: python3-scipy Requires: python3-matplotlib Requires: python3-tqdm Requires: python3-attrs Requires: python3-xgboost Requires: python3-sphinx Requires: python3-beautifulsoup4 Requires: python3-inflection Requires: python3-requests Requires: python3-lxml Requires: python3-pyarrow Requires: python3-pyjanitor Requires: python3-pyreadr Requires: python3-scipy Requires: python3-matplotlib Requires: python3-tqdm Requires: python3-attrs Requires: python3-xgboost Requires: python3-pytest Requires: python3-mypy Requires: python3-pytest-cov Requires: python3-pytest-xdist %description # sportsdataverse-py ![Lifecycle:experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg?style=for-the-badge&logo=github) [![PyPI](https://img.shields.io/pypi/v/sportsdataverse?label=sportsdataverse&logo=python&style=for-the-badge)](https://pypi.org/project/sportsdataverse/) ![Contributors](https://img.shields.io/github/contributors/sportsdataverse/sportsdataverse-py?style=for-the-badge) [![Twitter Follow](https://img.shields.io/twitter/follow/sportsdataverse?color=blue&label=%40sportsdataverse&logo=twitter&style=for-the-badge)](https://twitter.com/sportsdataverse) See [CHANGELOG.md](https://py.sportsdataverse.org/CHANGELOG) for details. The goal of [sportsdataverse-py](https://py.sportsdataverse.org) is to provide the community with a python package for working with sports data as a companion to the [cfbfastR](https://cfbfastR.sportsdataverse.org/), [hoopR](https://hoopR.sportsdataverse.org/), and [wehoop](https://wehoop.sportsdataverse.org/) R packages. Beyond data aggregation and tidying ease, one of the multitude of services that [sportsdataverse-py](https://py.sportsdataverse.org) provides is for benchmarking open-source expected points and win probability metrics for American Football. ## Installation sportsdataverse-py can be installed via pip: ```bash pip install sportsdataverse # with full dependencies pip install sportsdataverse[all] ``` or from the repo (which may at times be more up to date): ```bash git clone https://github.com/sportsdataverse/sportsdataverse-py cd sportsdataverse-py pip install -e .[all] ``` # **Our Authors** - [Saiem Gilani](https://twitter.com/saiemgilani) @saiemgilani @saiemgilani ## **Citations** To cite the [**`sportsdataverse-py`**](https://py.sportsdataverse.org) Python package in publications, use: BibTex Citation ```bibtex @misc{gilani_sdvpy_2021, author = {Gilani, Saiem}, title = {sportsdataverse-py: The SportsDataverse's Python Package for Sports Data.}, url = {https://py.sportsdataverse.org}, season = {2021} } ``` %package -n python3-sportsdataverse Summary: Retrieve Sports data in Python Provides: python-sportsdataverse BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-sportsdataverse # sportsdataverse-py ![Lifecycle:experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg?style=for-the-badge&logo=github) [![PyPI](https://img.shields.io/pypi/v/sportsdataverse?label=sportsdataverse&logo=python&style=for-the-badge)](https://pypi.org/project/sportsdataverse/) ![Contributors](https://img.shields.io/github/contributors/sportsdataverse/sportsdataverse-py?style=for-the-badge) [![Twitter Follow](https://img.shields.io/twitter/follow/sportsdataverse?color=blue&label=%40sportsdataverse&logo=twitter&style=for-the-badge)](https://twitter.com/sportsdataverse) See [CHANGELOG.md](https://py.sportsdataverse.org/CHANGELOG) for details. The goal of [sportsdataverse-py](https://py.sportsdataverse.org) is to provide the community with a python package for working with sports data as a companion to the [cfbfastR](https://cfbfastR.sportsdataverse.org/), [hoopR](https://hoopR.sportsdataverse.org/), and [wehoop](https://wehoop.sportsdataverse.org/) R packages. Beyond data aggregation and tidying ease, one of the multitude of services that [sportsdataverse-py](https://py.sportsdataverse.org) provides is for benchmarking open-source expected points and win probability metrics for American Football. ## Installation sportsdataverse-py can be installed via pip: ```bash pip install sportsdataverse # with full dependencies pip install sportsdataverse[all] ``` or from the repo (which may at times be more up to date): ```bash git clone https://github.com/sportsdataverse/sportsdataverse-py cd sportsdataverse-py pip install -e .[all] ``` # **Our Authors** - [Saiem Gilani](https://twitter.com/saiemgilani) @saiemgilani @saiemgilani ## **Citations** To cite the [**`sportsdataverse-py`**](https://py.sportsdataverse.org) Python package in publications, use: BibTex Citation ```bibtex @misc{gilani_sdvpy_2021, author = {Gilani, Saiem}, title = {sportsdataverse-py: The SportsDataverse's Python Package for Sports Data.}, url = {https://py.sportsdataverse.org}, season = {2021} } ``` %package help Summary: Development documents and examples for sportsdataverse Provides: python3-sportsdataverse-doc %description help # sportsdataverse-py ![Lifecycle:experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg?style=for-the-badge&logo=github) [![PyPI](https://img.shields.io/pypi/v/sportsdataverse?label=sportsdataverse&logo=python&style=for-the-badge)](https://pypi.org/project/sportsdataverse/) ![Contributors](https://img.shields.io/github/contributors/sportsdataverse/sportsdataverse-py?style=for-the-badge) [![Twitter Follow](https://img.shields.io/twitter/follow/sportsdataverse?color=blue&label=%40sportsdataverse&logo=twitter&style=for-the-badge)](https://twitter.com/sportsdataverse) See [CHANGELOG.md](https://py.sportsdataverse.org/CHANGELOG) for details. The goal of [sportsdataverse-py](https://py.sportsdataverse.org) is to provide the community with a python package for working with sports data as a companion to the [cfbfastR](https://cfbfastR.sportsdataverse.org/), [hoopR](https://hoopR.sportsdataverse.org/), and [wehoop](https://wehoop.sportsdataverse.org/) R packages. Beyond data aggregation and tidying ease, one of the multitude of services that [sportsdataverse-py](https://py.sportsdataverse.org) provides is for benchmarking open-source expected points and win probability metrics for American Football. ## Installation sportsdataverse-py can be installed via pip: ```bash pip install sportsdataverse # with full dependencies pip install sportsdataverse[all] ``` or from the repo (which may at times be more up to date): ```bash git clone https://github.com/sportsdataverse/sportsdataverse-py cd sportsdataverse-py pip install -e .[all] ``` # **Our Authors** - [Saiem Gilani](https://twitter.com/saiemgilani) @saiemgilani @saiemgilani ## **Citations** To cite the [**`sportsdataverse-py`**](https://py.sportsdataverse.org) Python package in publications, use: BibTex Citation ```bibtex @misc{gilani_sdvpy_2021, author = {Gilani, Saiem}, title = {sportsdataverse-py: The SportsDataverse's Python Package for Sports Data.}, url = {https://py.sportsdataverse.org}, season = {2021} } ``` %prep %autosetup -n sportsdataverse-0.0.36 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-sportsdataverse -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 31 2023 Python_Bot - 0.0.36-1 - Package Spec generated