%global _empty_manifest_terminate_build 0 Name: python-simpful Version: 2.11.0 Release: 1 Summary: A user-friendly Python library for fuzzy logic License: LICENSE.txt URL: https://github.com/aresio/simpful Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cd/d2/f4c3b7a6ce16165304df8f5472306fcfe3e07cb4e919e1022b5e231e1ce8/simpful-2.11.0.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scipy Requires: python3-matplotlib Requires: python3-seaborn %description ![Python package](https://github.com/aresio/simpful/workflows/Python%20package/badge.svg?branch=master) [![Documentation Status](https://readthedocs.org/projects/simpful/badge/?version=latest)](https://simpful.readthedocs.io/en/latest/?badge=latest) # simpful A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language. Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets. For more information on its usage, try out the example scripts in this repository or check our [online documentation](https://simpful.readthedocs.io/en/latest/). ## Installation `pip install simpful` ## Citing Simpful If you find Simpful useful for your research, please cite our work as follows: Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020 [DOI:10.2991/ijcis.d.201012.002](https://doi.org/10.2991/ijcis.d.201012.002) ## Usage example 1: controlling a gas burner with a Takagi-Sugeno fuzzy system This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning. ``` import simpful as sf # A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply. FS = sf.FuzzySystem() # Define a linguistic variable. S_1 = sf.FuzzySet( points=[[0, 1.], [1., 1.], [1.5, 0]], term="low_flow" ) S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" ) S_3 = sf.FuzzySet( points=[[2., 0], [2.5, 1.], [3., 1.]], term="high_flow" ) FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] )) # Define consequents. FS.set_crisp_output_value("LOW_POWER", 0) FS.set_crisp_output_value("MEDIUM_POWER", 25) FS.set_output_function("HIGH_FUN", "OXI**2") # Define fuzzy rules. RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)" RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)" RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)" FS.add_rules([RULE1, RULE2, RULE3]) # Set antecedents values, perform Sugeno inference and print output values. FS.set_variable("OXI", .51) print (FS.Sugeno_inference(['POWER'])) ``` ## Usage example 2: tipping with a Mamdani fuzzy system This second example shows how to model a FIS using Mamdani inference. It also shows some facilities that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables with equally spaced triangular fuzzy sets) and the automatic detection of the inference method. ``` from simpful import * FS = FuzzySystem() TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10]) FS.add_linguistic_variable("service", TLV) FS.add_linguistic_variable("quality", TLV) O1 = TriangleFuzzySet(0,0,13, term="low") O2 = TriangleFuzzySet(0,13,25, term="medium") O3 = TriangleFuzzySet(13,25,25, term="high") FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25])) FS.add_rules([ "IF (quality IS poor) OR (service IS poor) THEN (tip IS low)", "IF (service IS average) THEN (tip IS medium)", "IF (quality IS good) OR (service IS good) THEN (tip IS high)" ]) FS.set_variable("quality", 6.5) FS.set_variable("service", 9.8) tip = FS.inference() ``` ## Additional examples Additional example scripts are available in the [examples folder](https://github.com/aresio/simpful/tree/master/examples) of this GitHub and in our [Code Ocean capsule](https://codeocean.com/capsule/2230971/tree). ## Further info Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca. If you need further information, please write an e-mail at: marco.nobile@unive.it. %package -n python3-simpful Summary: A user-friendly Python library for fuzzy logic Provides: python-simpful BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-simpful ![Python package](https://github.com/aresio/simpful/workflows/Python%20package/badge.svg?branch=master) [![Documentation Status](https://readthedocs.org/projects/simpful/badge/?version=latest)](https://simpful.readthedocs.io/en/latest/?badge=latest) # simpful A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language. Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets. For more information on its usage, try out the example scripts in this repository or check our [online documentation](https://simpful.readthedocs.io/en/latest/). ## Installation `pip install simpful` ## Citing Simpful If you find Simpful useful for your research, please cite our work as follows: Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020 [DOI:10.2991/ijcis.d.201012.002](https://doi.org/10.2991/ijcis.d.201012.002) ## Usage example 1: controlling a gas burner with a Takagi-Sugeno fuzzy system This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning. ``` import simpful as sf # A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply. FS = sf.FuzzySystem() # Define a linguistic variable. S_1 = sf.FuzzySet( points=[[0, 1.], [1., 1.], [1.5, 0]], term="low_flow" ) S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" ) S_3 = sf.FuzzySet( points=[[2., 0], [2.5, 1.], [3., 1.]], term="high_flow" ) FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] )) # Define consequents. FS.set_crisp_output_value("LOW_POWER", 0) FS.set_crisp_output_value("MEDIUM_POWER", 25) FS.set_output_function("HIGH_FUN", "OXI**2") # Define fuzzy rules. RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)" RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)" RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)" FS.add_rules([RULE1, RULE2, RULE3]) # Set antecedents values, perform Sugeno inference and print output values. FS.set_variable("OXI", .51) print (FS.Sugeno_inference(['POWER'])) ``` ## Usage example 2: tipping with a Mamdani fuzzy system This second example shows how to model a FIS using Mamdani inference. It also shows some facilities that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables with equally spaced triangular fuzzy sets) and the automatic detection of the inference method. ``` from simpful import * FS = FuzzySystem() TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10]) FS.add_linguistic_variable("service", TLV) FS.add_linguistic_variable("quality", TLV) O1 = TriangleFuzzySet(0,0,13, term="low") O2 = TriangleFuzzySet(0,13,25, term="medium") O3 = TriangleFuzzySet(13,25,25, term="high") FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25])) FS.add_rules([ "IF (quality IS poor) OR (service IS poor) THEN (tip IS low)", "IF (service IS average) THEN (tip IS medium)", "IF (quality IS good) OR (service IS good) THEN (tip IS high)" ]) FS.set_variable("quality", 6.5) FS.set_variable("service", 9.8) tip = FS.inference() ``` ## Additional examples Additional example scripts are available in the [examples folder](https://github.com/aresio/simpful/tree/master/examples) of this GitHub and in our [Code Ocean capsule](https://codeocean.com/capsule/2230971/tree). ## Further info Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca. If you need further information, please write an e-mail at: marco.nobile@unive.it. %package help Summary: Development documents and examples for simpful Provides: python3-simpful-doc %description help ![Python package](https://github.com/aresio/simpful/workflows/Python%20package/badge.svg?branch=master) [![Documentation Status](https://readthedocs.org/projects/simpful/badge/?version=latest)](https://simpful.readthedocs.io/en/latest/?badge=latest) # simpful A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language. Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets. For more information on its usage, try out the example scripts in this repository or check our [online documentation](https://simpful.readthedocs.io/en/latest/). ## Installation `pip install simpful` ## Citing Simpful If you find Simpful useful for your research, please cite our work as follows: Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020 [DOI:10.2991/ijcis.d.201012.002](https://doi.org/10.2991/ijcis.d.201012.002) ## Usage example 1: controlling a gas burner with a Takagi-Sugeno fuzzy system This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning. ``` import simpful as sf # A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply. FS = sf.FuzzySystem() # Define a linguistic variable. S_1 = sf.FuzzySet( points=[[0, 1.], [1., 1.], [1.5, 0]], term="low_flow" ) S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" ) S_3 = sf.FuzzySet( points=[[2., 0], [2.5, 1.], [3., 1.]], term="high_flow" ) FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] )) # Define consequents. FS.set_crisp_output_value("LOW_POWER", 0) FS.set_crisp_output_value("MEDIUM_POWER", 25) FS.set_output_function("HIGH_FUN", "OXI**2") # Define fuzzy rules. RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)" RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)" RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)" FS.add_rules([RULE1, RULE2, RULE3]) # Set antecedents values, perform Sugeno inference and print output values. FS.set_variable("OXI", .51) print (FS.Sugeno_inference(['POWER'])) ``` ## Usage example 2: tipping with a Mamdani fuzzy system This second example shows how to model a FIS using Mamdani inference. It also shows some facilities that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables with equally spaced triangular fuzzy sets) and the automatic detection of the inference method. ``` from simpful import * FS = FuzzySystem() TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10]) FS.add_linguistic_variable("service", TLV) FS.add_linguistic_variable("quality", TLV) O1 = TriangleFuzzySet(0,0,13, term="low") O2 = TriangleFuzzySet(0,13,25, term="medium") O3 = TriangleFuzzySet(13,25,25, term="high") FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25])) FS.add_rules([ "IF (quality IS poor) OR (service IS poor) THEN (tip IS low)", "IF (service IS average) THEN (tip IS medium)", "IF (quality IS good) OR (service IS good) THEN (tip IS high)" ]) FS.set_variable("quality", 6.5) FS.set_variable("service", 9.8) tip = FS.inference() ``` ## Additional examples Additional example scripts are available in the [examples folder](https://github.com/aresio/simpful/tree/master/examples) of this GitHub and in our [Code Ocean capsule](https://codeocean.com/capsule/2230971/tree). ## Further info Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca. If you need further information, please write an e-mail at: marco.nobile@unive.it. %prep %autosetup -n simpful-2.11.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-simpful -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed May 31 2023 Python_Bot - 2.11.0-1 - Package Spec generated