%global _empty_manifest_terminate_build 0 Name: python-automl-alex Version: 2023.3.11 Release: 1 Summary: State-of-the art Automated Machine Learning python library for Tabular Data License: MIT URL: https://pypi.org/project/automl-alex/ Source0: https://mirrors.aliyun.com/pypi/web/packages/4e/be/345d3d0a44e7ee8e9432c049a1b7663ecf84923f4babc4465b37d5a0f24c/automl-alex-2023.3.11.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-pandas Requires: python3-scikit-learn Requires: python3-seaborn Requires: python3-lightgbm Requires: python3-catboost Requires: python3-xgboost Requires: python3-tqdm Requires: python3-optuna Requires: python3-category-encoders Requires: python3-optuna-dashboard Requires: python3-loguru Requires: python3-psutil Requires: python3-nbformat %description

State-of-the art Automated Machine Learning python library for Tabular Data

## Works with Tasks: - [x] Binary Classification - [x] Regression - [ ] Multiclass Classification (in progress...) ### Benchmark Results bench The bigger, the better From [AutoML-Benchmark](https://github.com/Alex-Lekov/AutoML-Benchmark/) ### Scheme scheme # Features - Automated Data Clean (Auto Clean) - Automated **Feature Engineering** (Auto FE) - Smart Hyperparameter Optimization (HPO) - Feature Generation - Feature Selection - Models Selection - Cross Validation - Optimization Timelimit and EarlyStoping - Save and Load (Predict new data) # Installation ```python pip install automl-alex ``` # Docs [DocPage](https://alex-lekov.github.io/AutoML_Alex/) # 🚀 Examples Classifier: ```python from automl_alex import AutoMLClassifier model = AutoMLClassifier() model.fit(X_train, y_train, timeout=600) predicts = model.predict(X_test) ``` Regression: ```python from automl_alex import AutoMLRegressor model = AutoMLRegressor() model.fit(X_train, y_train, timeout=600) predicts = model.predict(X_test) ``` DataPrepare: ```python from automl_alex import DataPrepare de = DataPrepare() X_train = de.fit_transform(X_train) X_test = de.transform(X_test) ``` Simple Models Wrapper: ```python from automl_alex import LightGBMClassifier model = LightGBMClassifier() model.fit(X_train, y_train) predicts = model.predict_proba(X_test) model.opt(X_train, y_train, timeout=600, # optimization time in seconds, ) predicts = model.predict_proba(X_test) ``` More examples in the folder ./examples: - [01_Quick_Start.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) - [02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) - [03_Models.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) - [04_ModelsReview.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) - [05_BestSingleModel.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) - [Production Docker template](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/prod_sample) # What's inside It integrates many popular frameworks: - scikit-learn - XGBoost - LightGBM - CatBoost - Optuna - ... # Works with Features - [x] Categorical Features - [x] Numerical Features - [x] Binary Features - [ ] Text - [ ] Datetime - [ ] Timeseries - [ ] Image # Note - **With a large dataset, a lot of memory is required!** Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory. # Realtime Dashboard Works with [optuna-dashboard](https://github.com/optuna/optuna-dashboard) Dashboard Run ```console $ optuna-dashboard sqlite:///db.sqlite3 ``` # Road Map - [x] Feature Generation - [x] Save/Load and Predict on New Samples - [x] Advanced Logging - [x] Add opt Pruners - [ ] Docs Site - [ ] DL Encoders - [ ] Add More libs (NNs) - [ ] Multiclass Classification - [ ] Build pipelines # Contact [Telegram Group](https://t.me/automlalex) %package -n python3-automl-alex Summary: State-of-the art Automated Machine Learning python library for Tabular Data Provides: python-automl-alex BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-automl-alex

State-of-the art Automated Machine Learning python library for Tabular Data

## Works with Tasks: - [x] Binary Classification - [x] Regression - [ ] Multiclass Classification (in progress...) ### Benchmark Results bench The bigger, the better From [AutoML-Benchmark](https://github.com/Alex-Lekov/AutoML-Benchmark/) ### Scheme scheme # Features - Automated Data Clean (Auto Clean) - Automated **Feature Engineering** (Auto FE) - Smart Hyperparameter Optimization (HPO) - Feature Generation - Feature Selection - Models Selection - Cross Validation - Optimization Timelimit and EarlyStoping - Save and Load (Predict new data) # Installation ```python pip install automl-alex ``` # Docs [DocPage](https://alex-lekov.github.io/AutoML_Alex/) # 🚀 Examples Classifier: ```python from automl_alex import AutoMLClassifier model = AutoMLClassifier() model.fit(X_train, y_train, timeout=600) predicts = model.predict(X_test) ``` Regression: ```python from automl_alex import AutoMLRegressor model = AutoMLRegressor() model.fit(X_train, y_train, timeout=600) predicts = model.predict(X_test) ``` DataPrepare: ```python from automl_alex import DataPrepare de = DataPrepare() X_train = de.fit_transform(X_train) X_test = de.transform(X_test) ``` Simple Models Wrapper: ```python from automl_alex import LightGBMClassifier model = LightGBMClassifier() model.fit(X_train, y_train) predicts = model.predict_proba(X_test) model.opt(X_train, y_train, timeout=600, # optimization time in seconds, ) predicts = model.predict_proba(X_test) ``` More examples in the folder ./examples: - [01_Quick_Start.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) - [02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) - [03_Models.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) - [04_ModelsReview.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) - [05_BestSingleModel.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) - [Production Docker template](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/prod_sample) # What's inside It integrates many popular frameworks: - scikit-learn - XGBoost - LightGBM - CatBoost - Optuna - ... # Works with Features - [x] Categorical Features - [x] Numerical Features - [x] Binary Features - [ ] Text - [ ] Datetime - [ ] Timeseries - [ ] Image # Note - **With a large dataset, a lot of memory is required!** Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory. # Realtime Dashboard Works with [optuna-dashboard](https://github.com/optuna/optuna-dashboard) Dashboard Run ```console $ optuna-dashboard sqlite:///db.sqlite3 ``` # Road Map - [x] Feature Generation - [x] Save/Load and Predict on New Samples - [x] Advanced Logging - [x] Add opt Pruners - [ ] Docs Site - [ ] DL Encoders - [ ] Add More libs (NNs) - [ ] Multiclass Classification - [ ] Build pipelines # Contact [Telegram Group](https://t.me/automlalex) %package help Summary: Development documents and examples for automl-alex Provides: python3-automl-alex-doc %description help

State-of-the art Automated Machine Learning python library for Tabular Data

## Works with Tasks: - [x] Binary Classification - [x] Regression - [ ] Multiclass Classification (in progress...) ### Benchmark Results bench The bigger, the better From [AutoML-Benchmark](https://github.com/Alex-Lekov/AutoML-Benchmark/) ### Scheme scheme # Features - Automated Data Clean (Auto Clean) - Automated **Feature Engineering** (Auto FE) - Smart Hyperparameter Optimization (HPO) - Feature Generation - Feature Selection - Models Selection - Cross Validation - Optimization Timelimit and EarlyStoping - Save and Load (Predict new data) # Installation ```python pip install automl-alex ``` # Docs [DocPage](https://alex-lekov.github.io/AutoML_Alex/) # 🚀 Examples Classifier: ```python from automl_alex import AutoMLClassifier model = AutoMLClassifier() model.fit(X_train, y_train, timeout=600) predicts = model.predict(X_test) ``` Regression: ```python from automl_alex import AutoMLRegressor model = AutoMLRegressor() model.fit(X_train, y_train, timeout=600) predicts = model.predict(X_test) ``` DataPrepare: ```python from automl_alex import DataPrepare de = DataPrepare() X_train = de.fit_transform(X_train) X_test = de.transform(X_test) ``` Simple Models Wrapper: ```python from automl_alex import LightGBMClassifier model = LightGBMClassifier() model.fit(X_train, y_train) predicts = model.predict_proba(X_test) model.opt(X_train, y_train, timeout=600, # optimization time in seconds, ) predicts = model.predict_proba(X_test) ``` More examples in the folder ./examples: - [01_Quick_Start.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) - [02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) - [03_Models.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) - [04_ModelsReview.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) - [05_BestSingleModel.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) - [Production Docker template](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/prod_sample) # What's inside It integrates many popular frameworks: - scikit-learn - XGBoost - LightGBM - CatBoost - Optuna - ... # Works with Features - [x] Categorical Features - [x] Numerical Features - [x] Binary Features - [ ] Text - [ ] Datetime - [ ] Timeseries - [ ] Image # Note - **With a large dataset, a lot of memory is required!** Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory. # Realtime Dashboard Works with [optuna-dashboard](https://github.com/optuna/optuna-dashboard) Dashboard Run ```console $ optuna-dashboard sqlite:///db.sqlite3 ``` # Road Map - [x] Feature Generation - [x] Save/Load and Predict on New Samples - [x] Advanced Logging - [x] Add opt Pruners - [ ] Docs Site - [ ] DL Encoders - [ ] Add More libs (NNs) - [ ] Multiclass Classification - [ ] Build pipelines # Contact [Telegram Group](https://t.me/automlalex) %prep %autosetup -n automl-alex-2023.3.11 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-automl-alex -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 2023.3.11-1 - Package Spec generated