%global _empty_manifest_terminate_build 0 Name: python-Manteia Version: 0.0.41 Release: 1 Summary: deep learning,NLP,classification,text,bert,distilbert,albert,xlnet,roberta,gpt2,torch,pytorch,active learning,augmentation,data License: MIT License URL: https://pypi.org/project/Manteia/ Source0: https://mirrors.aliyun.com/pypi/web/packages/6b/f9/66fae5f7d919d35fa8b246b6d51e95bd5b6bf4093b91974b5ad44fd959d3/Manteia-0.0.41.tar.gz BuildArch: noarch %description Designing your neural network to natural language processing. Deep learning has been used extensively in natural language processing (NLP) because it is well suited for learning the complex underlying structure of a sentence and semantic proximity of various words. Data cleaning, construction model (Bert, Roberta, Distilbert, XLNet, Albert, GPT, GPT2), quality measurement training and finally visualization of your results on several dataset ( 20newsgroups, SST-2, PubMed_20k_RCT, DBPedia, Amazon Review Full, Amazon Review Polarity). You can install it with pip :      __pip install Manteia__ [Pretraitement]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/boxplot.png) [Training]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/train.png) For use with GPU and cuda we recommend the use of [Anaconda](https://www.anaconda.com/open-source) :      __conda create -n manteia_env python=3.7__      __conda activate manteia_env__      __conda install pytorch__      __pip install manteia__ Example of use Classification : from Manteia.Classification import Classification from Manteia.Model import Model documents = ['What should you do before criticizing Pac-Man? WAKA WAKA WAKA mile in his shoe.','What did Arnold Schwarzenegger say at the abortion clinic? Hasta last vista, baby.'] labels = ['funny','not funny'] model = Model(model_name ='roberta') cl=Classification(model,documents,labels,process_classif=True) [NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation1.ipynb) Example of use Generation : from Manteia.Generation import Generation from Manteia.Dataset import Dataset from Manteia.Model import * ds=Dataset('Short_Jokes') model = Model(model_name ='gpt2') text_loader = Create_DataLoader_generation(ds.documents_train[:10000],batch_size=32) model.load_type() model.load_tokenizer() model.load_class() model.devices() model.configuration(text_loader) gn=Generation(model) gn.model.fit_generation(text_loader) output = model.predict_generation('What did you expect ?') output_text = decode_text(output,model.tokenizer) print(output_text) [NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation2.ipynb) [Documentation](https://manteia.readthedocs.io/en/latest/#) [Pypi](https://pypi.org/project/Manteia/) [Source](https://github.com/ym001/Manteia) This code is licensed under MIT. %package -n python3-Manteia Summary: deep learning,NLP,classification,text,bert,distilbert,albert,xlnet,roberta,gpt2,torch,pytorch,active learning,augmentation,data Provides: python-Manteia BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-Manteia Designing your neural network to natural language processing. Deep learning has been used extensively in natural language processing (NLP) because it is well suited for learning the complex underlying structure of a sentence and semantic proximity of various words. Data cleaning, construction model (Bert, Roberta, Distilbert, XLNet, Albert, GPT, GPT2), quality measurement training and finally visualization of your results on several dataset ( 20newsgroups, SST-2, PubMed_20k_RCT, DBPedia, Amazon Review Full, Amazon Review Polarity). You can install it with pip :      __pip install Manteia__ [Pretraitement]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/boxplot.png) [Training]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/train.png) For use with GPU and cuda we recommend the use of [Anaconda](https://www.anaconda.com/open-source) :      __conda create -n manteia_env python=3.7__      __conda activate manteia_env__      __conda install pytorch__      __pip install manteia__ Example of use Classification : from Manteia.Classification import Classification from Manteia.Model import Model documents = ['What should you do before criticizing Pac-Man? WAKA WAKA WAKA mile in his shoe.','What did Arnold Schwarzenegger say at the abortion clinic? Hasta last vista, baby.'] labels = ['funny','not funny'] model = Model(model_name ='roberta') cl=Classification(model,documents,labels,process_classif=True) [NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation1.ipynb) Example of use Generation : from Manteia.Generation import Generation from Manteia.Dataset import Dataset from Manteia.Model import * ds=Dataset('Short_Jokes') model = Model(model_name ='gpt2') text_loader = Create_DataLoader_generation(ds.documents_train[:10000],batch_size=32) model.load_type() model.load_tokenizer() model.load_class() model.devices() model.configuration(text_loader) gn=Generation(model) gn.model.fit_generation(text_loader) output = model.predict_generation('What did you expect ?') output_text = decode_text(output,model.tokenizer) print(output_text) [NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation2.ipynb) [Documentation](https://manteia.readthedocs.io/en/latest/#) [Pypi](https://pypi.org/project/Manteia/) [Source](https://github.com/ym001/Manteia) This code is licensed under MIT. %package help Summary: Development documents and examples for Manteia Provides: python3-Manteia-doc %description help Designing your neural network to natural language processing. Deep learning has been used extensively in natural language processing (NLP) because it is well suited for learning the complex underlying structure of a sentence and semantic proximity of various words. Data cleaning, construction model (Bert, Roberta, Distilbert, XLNet, Albert, GPT, GPT2), quality measurement training and finally visualization of your results on several dataset ( 20newsgroups, SST-2, PubMed_20k_RCT, DBPedia, Amazon Review Full, Amazon Review Polarity). You can install it with pip :      __pip install Manteia__ [Pretraitement]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/boxplot.png) [Training]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/train.png) For use with GPU and cuda we recommend the use of [Anaconda](https://www.anaconda.com/open-source) :      __conda create -n manteia_env python=3.7__      __conda activate manteia_env__      __conda install pytorch__      __pip install manteia__ Example of use Classification : from Manteia.Classification import Classification from Manteia.Model import Model documents = ['What should you do before criticizing Pac-Man? WAKA WAKA WAKA mile in his shoe.','What did Arnold Schwarzenegger say at the abortion clinic? Hasta last vista, baby.'] labels = ['funny','not funny'] model = Model(model_name ='roberta') cl=Classification(model,documents,labels,process_classif=True) [NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation1.ipynb) Example of use Generation : from Manteia.Generation import Generation from Manteia.Dataset import Dataset from Manteia.Model import * ds=Dataset('Short_Jokes') model = Model(model_name ='gpt2') text_loader = Create_DataLoader_generation(ds.documents_train[:10000],batch_size=32) model.load_type() model.load_tokenizer() model.load_class() model.devices() model.configuration(text_loader) gn=Generation(model) gn.model.fit_generation(text_loader) output = model.predict_generation('What did you expect ?') output_text = decode_text(output,model.tokenizer) print(output_text) [NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation2.ipynb) [Documentation](https://manteia.readthedocs.io/en/latest/#) [Pypi](https://pypi.org/project/Manteia/) [Source](https://github.com/ym001/Manteia) This code is licensed under MIT. %prep %autosetup -n Manteia-0.0.41 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-Manteia -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Jun 08 2023 Python_Bot - 0.0.41-1 - Package Spec generated