%global _empty_manifest_terminate_build 0 Name: python-cache-decorator Version: 2.1.14 Release: 1 Summary: a simple decorator to cache the results of computationally heavy functions License: MIT URL: https://github.com/zommiommy/cache_decorator Source0: https://mirrors.aliyun.com/pypi/web/packages/82/97/a3dd4feacebc2206c8cb37c800d908ab6d801d215fa7639b4ed782bbeebe/cache_decorator-2.1.14.tar.gz BuildArch: noarch %description |pip| |downloads| A simple decorator to cache the results of computationally heavy functions. The package automatically serialize and deserialize depending on the format of the save path. By default it supports ``.json .json.gz .json.bz .json.lzma`` and ``.pkl .pkl.gz .pkl.bz .pkl.lzma .pkl.zip`` but other extensions can be used if the following packages are installed: numpy: ``.npy .npz`` pandas: ``.csv .csv.gz .csv.bz2 .csv.zip .csv.xz`` Also there is an optimized format for numerical dataframes: pandas: ``.embedding .embedding.gz .embedding.bz2 .embedding.xz`` This creates an optionally compressed tar archive with pickles of the index and columns and a ``.npy`` of the values. import time import numpy as np import pandas as pd from cache_decorator import Cache @Cache( cache_path={ "info": "/tmp/{function_name}/{_hash}.json.xz", "data": "/tmp/{function_name}/{_hash}.csv.gz", }, validity_duration="24d", args_to_ignore=("verbose",), enable_cache_arg_name="enable_cache", ) def function_to_cache(seed: int, verbose: bool = True): np.random.seed(seed) if verbose: print(f"using seed {seed}") return { "info": {"timestamp": time.time(), "seed": seed,}, "data": pd.DataFrame( np.random.randint(0, 100, size=(100, 4)), columns=list("ABCD") ), } %package -n python3-cache-decorator Summary: a simple decorator to cache the results of computationally heavy functions Provides: python-cache-decorator BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-cache-decorator |pip| |downloads| A simple decorator to cache the results of computationally heavy functions. The package automatically serialize and deserialize depending on the format of the save path. By default it supports ``.json .json.gz .json.bz .json.lzma`` and ``.pkl .pkl.gz .pkl.bz .pkl.lzma .pkl.zip`` but other extensions can be used if the following packages are installed: numpy: ``.npy .npz`` pandas: ``.csv .csv.gz .csv.bz2 .csv.zip .csv.xz`` Also there is an optimized format for numerical dataframes: pandas: ``.embedding .embedding.gz .embedding.bz2 .embedding.xz`` This creates an optionally compressed tar archive with pickles of the index and columns and a ``.npy`` of the values. import time import numpy as np import pandas as pd from cache_decorator import Cache @Cache( cache_path={ "info": "/tmp/{function_name}/{_hash}.json.xz", "data": "/tmp/{function_name}/{_hash}.csv.gz", }, validity_duration="24d", args_to_ignore=("verbose",), enable_cache_arg_name="enable_cache", ) def function_to_cache(seed: int, verbose: bool = True): np.random.seed(seed) if verbose: print(f"using seed {seed}") return { "info": {"timestamp": time.time(), "seed": seed,}, "data": pd.DataFrame( np.random.randint(0, 100, size=(100, 4)), columns=list("ABCD") ), } %package help Summary: Development documents and examples for cache-decorator Provides: python3-cache-decorator-doc %description help |pip| |downloads| A simple decorator to cache the results of computationally heavy functions. The package automatically serialize and deserialize depending on the format of the save path. By default it supports ``.json .json.gz .json.bz .json.lzma`` and ``.pkl .pkl.gz .pkl.bz .pkl.lzma .pkl.zip`` but other extensions can be used if the following packages are installed: numpy: ``.npy .npz`` pandas: ``.csv .csv.gz .csv.bz2 .csv.zip .csv.xz`` Also there is an optimized format for numerical dataframes: pandas: ``.embedding .embedding.gz .embedding.bz2 .embedding.xz`` This creates an optionally compressed tar archive with pickles of the index and columns and a ``.npy`` of the values. import time import numpy as np import pandas as pd from cache_decorator import Cache @Cache( cache_path={ "info": "/tmp/{function_name}/{_hash}.json.xz", "data": "/tmp/{function_name}/{_hash}.csv.gz", }, validity_duration="24d", args_to_ignore=("verbose",), enable_cache_arg_name="enable_cache", ) def function_to_cache(seed: int, verbose: bool = True): np.random.seed(seed) if verbose: print(f"using seed {seed}") return { "info": {"timestamp": time.time(), "seed": seed,}, "data": pd.DataFrame( np.random.randint(0, 100, size=(100, 4)), columns=list("ABCD") ), } %prep %autosetup -n cache_decorator-2.1.14 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-cache-decorator -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Jun 09 2023 Python_Bot - 2.1.14-1 - Package Spec generated