%global _empty_manifest_terminate_build 0 Name: python-augmentation-engine Version: 0.1.2 Release: 1 Summary: Solar Filaments data augmentation demo package License: MIT License URL: https://bitbucket.org/gsudmlab/augmentation_engine/src/master/ Source0: https://mirrors.aliyun.com/pypi/web/packages/e3/6e/7349c0218e5af7f68c817c6391d161b2295d7f2ba5ad9d063e6c887b0dfc/augmentation_engine-0.1.2.tar.gz BuildArch: noarch Requires: python3-sortedcontainers Requires: python3-opencv-python Requires: python3-torchvision Requires: python3-pillow Requires: python3-pycocotools %description ```python pip install augmentation_engine ``` Requirement already satisfied: augmentation_engine in d:\gsu_assignments\semester_2\dl\augmentation_engine (0.0.1) Requirement already satisfied: sortedcontainers in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (2.4.0) Requirement already satisfied: opencv_python in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (4.5.3.56) Requirement already satisfied: torchvision in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (0.10.0) Requirement already satisfied: pillow in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (8.3.2) Requirement already satisfied: numpy>=1.17.3 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from opencv_python->augmentation_engine) (1.21.2) Requirement already satisfied: torch==1.9.0 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torchvision->augmentation_engine) (1.9.0) Requirement already satisfied: typing-extensions in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torch==1.9.0->torchvision->augmentation_engine) (3.10.0.2) Note: you may need to restart the kernel to use updated packages. ### Import Required Libraries ```python import os from torchvision import transforms import matplotlib.pyplot as plt from filament_augmentation.loader.filament_dataloader import FilamentDataLoader from filament_augmentation.generator.filament_dataset import FilamentDataset from filament_augmentation.metadata.filament_metadata import FilamentMetadata ``` **To find out the number of left, right and unidentified chiralities for an interval of time.** - The code snippet below gives the *chirality distribution*, i.e., the distribution of left, right and unidentified chiralities for an interval of time from "2015-08-01 17:36:15" to "2015-08-09 18:15:17". - Here the petdata has big bear space observatory(BBSO) full disk solar images from (01-09) aug 2015. - The format for start and end time should be YYYY-MM-DD HH:MM:SS. - The ann_file or annotation file is a H-alpha based manually labelled filaments in a json file comes with petdata. ```python __file__ = 'augmentation_process.ipynb' bbso_json = os.path.abspath( os.path.join(os.path.dirname(__file__), 'petdata', 'bbso_json_data','2015_chir_data.json')) filamentInfo = FilamentMetadata(ann_file = bbso_json, start_time = '2015-08-01 00:00:15', end_time = '2015-08-30 23:59:59') filamentInfo.get_chirality_distribution() ``` (22, 30, 186) - In order to generate extra filaments for left, right or unidentified chirality by either balancing the data or getting them in required ratios to train them using an ML algorithm. A filament dataset class should be initialized which is quite similar to that of pytorch dataset class. - The transform list should be list of torchvision [transformations](https://pytorch.org/vision/0.8/transforms.html) - Filament ratio is tuple variable that takes (L,R,U). ### Initializing Filament dataset To initialize filament dataset class follow parameters are required: - bbso_path - BBSO full disk H-alpha solar images comes with petdata, path of the folder. - ann_file - a H-alpha based manually labelled filaments in a json file comes with petdata. - The format for start and end time should be YYYY-MM-DD HH:MM:SS. ```python bbso_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'petdata', '2015')) dataset = FilamentDataset(bbso_path = bbso_path, ann_file = bbso_json, start_time = "2015-08-01 17:36:15", end_time = "2015-08-09 17:36:15") ``` loading annotations into memory... Done (t=0.07s) creating index... index created! ### Setup transformations for data augmentation The transformations function can be refered from [torchvision transforms](https://pytorch.org/vision/0.8/transforms.html) - Here transforms variable should have list of torchvision transforms functions as shown below: ```python transforms1 = [ transforms.ColorJitter(brightness=(0.25,1.25), contrast=(0.25,2.00), saturation=(0.25,2.25)), transforms.RandomRotation(15,expand=False,fill=110) ] ``` ### Initializing data loader - dataset = object of filament dataset class. - batch_size = number of filaments to be generated per batch. - filament_ratio = tuple of three values, i.e., ratios of left, right and unidentified chirality to be generated in each batch. - n_batchs = number of batchs. - transforms = list of torchvision transformations functions - image_dim = image dimensions if image dimension is -1 then image will not be resize, i.e., output is original image size. ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),n_batchs = 10, transforms = transforms1, image_dim = 224) ``` #### How to generate 3 filament images for every batch with ratio of left as 1, right chirality as 1 and unidentified as 1 for 10 batches with original image dimension and display the images? ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1), n_batchs = 10, transforms = transforms1, image_dim = -1) ``` #### Batch -1 augmented filament images and their following labels (1=R, 0= U, -1=L) ```python for original_imgs, transformed_imgs, labels in data_loader: for org_img, img, label in zip(original_imgs ,transformed_imgs, labels): print("Original image") plt.imshow(org_img, cmap='gray') plt.show() print("Transformed image") plt.imshow(img, cmap='gray') plt.show() print("Label",label) break ``` Original image ![png](document_images/output_18_1.png) Transformed image ![png](document_images/output_18_3.png) Label 0 Original image ![png](document_images/output_18_5.png) Transformed image ![png](document_images/output_18_7.png) Label 1 Original image ![png](document_images/output_18_9.png) Transformed image ![png](document_images/output_18_11.png) Label -1 #### How to generate 12 filament images for every batch with ratio of left as 2, right chirality as 3 and unidentified as 1 for 5 batches with image dimension of 224x224 ? ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 12 , filament_ratio = (2, 3, 1), n_batchs = 5, transforms = transforms1, image_dim = 224) ``` ```python for _, imgs, labels in data_loader: print("size of images ",imgs.shape) print("labels for each batch ",labels) ``` size of images torch.Size([12, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [-1], [ 0], [ 1], [-1], [ 1], [ 1], [ 1], [ 0], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 0], [ 1], [-1], [-1], [ 1], [-1], [ 1], [ 1], [ 0], [-1], [ 1], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 1], [ 1], [ 1], [ 0], [-1], [ 1], [-1], [ 0], [-1], [ 1], [-1], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [ 1], [ 1], [ 0], [ 1], [-1], [-1], [ 1], [ 1], [ 0]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 1], [ 1], [-1], [ 1], [-1], [ 0], [ 1], [ 0], [ 1], [-1], [-1], [ 1]]) #### How to generate 10 filament images for every batch only for left and right chirality for 5 batches with image dimension of 224x224 ? - In order to remove one type of chiraity, filament ratio, i.e., tuple(L, R, U): - if L=0 that means left chirality is eliminated. Similarly, this applies to other types as well. ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 10 , filament_ratio = (1, 1, 0), n_batchs = 5, transforms = transforms1, image_dim = 224) ``` ```python for _, imgs, labels in data_loader: print("size of images ",imgs.shape) print("labels for each batch ",labels) ``` size of images torch.Size([10, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [-1], [ 1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [-1], [-1], [ 1], [-1], [-1], [ 1], [ 1], [ 1], [-1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [-1], [-1], [-1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [ 1], [-1], [-1], [ 1], [-1], [-1], [ 1], [-1], [ 1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[-1], [-1], [-1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [ 1]]) %package -n python3-augmentation-engine Summary: Solar Filaments data augmentation demo package Provides: python-augmentation-engine BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-augmentation-engine ```python pip install augmentation_engine ``` Requirement already satisfied: augmentation_engine in d:\gsu_assignments\semester_2\dl\augmentation_engine (0.0.1) Requirement already satisfied: sortedcontainers in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (2.4.0) Requirement already satisfied: opencv_python in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (4.5.3.56) Requirement already satisfied: torchvision in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (0.10.0) Requirement already satisfied: pillow in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (8.3.2) Requirement already satisfied: numpy>=1.17.3 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from opencv_python->augmentation_engine) (1.21.2) Requirement already satisfied: torch==1.9.0 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torchvision->augmentation_engine) (1.9.0) Requirement already satisfied: typing-extensions in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torch==1.9.0->torchvision->augmentation_engine) (3.10.0.2) Note: you may need to restart the kernel to use updated packages. ### Import Required Libraries ```python import os from torchvision import transforms import matplotlib.pyplot as plt from filament_augmentation.loader.filament_dataloader import FilamentDataLoader from filament_augmentation.generator.filament_dataset import FilamentDataset from filament_augmentation.metadata.filament_metadata import FilamentMetadata ``` **To find out the number of left, right and unidentified chiralities for an interval of time.** - The code snippet below gives the *chirality distribution*, i.e., the distribution of left, right and unidentified chiralities for an interval of time from "2015-08-01 17:36:15" to "2015-08-09 18:15:17". - Here the petdata has big bear space observatory(BBSO) full disk solar images from (01-09) aug 2015. - The format for start and end time should be YYYY-MM-DD HH:MM:SS. - The ann_file or annotation file is a H-alpha based manually labelled filaments in a json file comes with petdata. ```python __file__ = 'augmentation_process.ipynb' bbso_json = os.path.abspath( os.path.join(os.path.dirname(__file__), 'petdata', 'bbso_json_data','2015_chir_data.json')) filamentInfo = FilamentMetadata(ann_file = bbso_json, start_time = '2015-08-01 00:00:15', end_time = '2015-08-30 23:59:59') filamentInfo.get_chirality_distribution() ``` (22, 30, 186) - In order to generate extra filaments for left, right or unidentified chirality by either balancing the data or getting them in required ratios to train them using an ML algorithm. A filament dataset class should be initialized which is quite similar to that of pytorch dataset class. - The transform list should be list of torchvision [transformations](https://pytorch.org/vision/0.8/transforms.html) - Filament ratio is tuple variable that takes (L,R,U). ### Initializing Filament dataset To initialize filament dataset class follow parameters are required: - bbso_path - BBSO full disk H-alpha solar images comes with petdata, path of the folder. - ann_file - a H-alpha based manually labelled filaments in a json file comes with petdata. - The format for start and end time should be YYYY-MM-DD HH:MM:SS. ```python bbso_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'petdata', '2015')) dataset = FilamentDataset(bbso_path = bbso_path, ann_file = bbso_json, start_time = "2015-08-01 17:36:15", end_time = "2015-08-09 17:36:15") ``` loading annotations into memory... Done (t=0.07s) creating index... index created! ### Setup transformations for data augmentation The transformations function can be refered from [torchvision transforms](https://pytorch.org/vision/0.8/transforms.html) - Here transforms variable should have list of torchvision transforms functions as shown below: ```python transforms1 = [ transforms.ColorJitter(brightness=(0.25,1.25), contrast=(0.25,2.00), saturation=(0.25,2.25)), transforms.RandomRotation(15,expand=False,fill=110) ] ``` ### Initializing data loader - dataset = object of filament dataset class. - batch_size = number of filaments to be generated per batch. - filament_ratio = tuple of three values, i.e., ratios of left, right and unidentified chirality to be generated in each batch. - n_batchs = number of batchs. - transforms = list of torchvision transformations functions - image_dim = image dimensions if image dimension is -1 then image will not be resize, i.e., output is original image size. ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),n_batchs = 10, transforms = transforms1, image_dim = 224) ``` #### How to generate 3 filament images for every batch with ratio of left as 1, right chirality as 1 and unidentified as 1 for 10 batches with original image dimension and display the images? ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1), n_batchs = 10, transforms = transforms1, image_dim = -1) ``` #### Batch -1 augmented filament images and their following labels (1=R, 0= U, -1=L) ```python for original_imgs, transformed_imgs, labels in data_loader: for org_img, img, label in zip(original_imgs ,transformed_imgs, labels): print("Original image") plt.imshow(org_img, cmap='gray') plt.show() print("Transformed image") plt.imshow(img, cmap='gray') plt.show() print("Label",label) break ``` Original image ![png](document_images/output_18_1.png) Transformed image ![png](document_images/output_18_3.png) Label 0 Original image ![png](document_images/output_18_5.png) Transformed image ![png](document_images/output_18_7.png) Label 1 Original image ![png](document_images/output_18_9.png) Transformed image ![png](document_images/output_18_11.png) Label -1 #### How to generate 12 filament images for every batch with ratio of left as 2, right chirality as 3 and unidentified as 1 for 5 batches with image dimension of 224x224 ? ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 12 , filament_ratio = (2, 3, 1), n_batchs = 5, transforms = transforms1, image_dim = 224) ``` ```python for _, imgs, labels in data_loader: print("size of images ",imgs.shape) print("labels for each batch ",labels) ``` size of images torch.Size([12, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [-1], [ 0], [ 1], [-1], [ 1], [ 1], [ 1], [ 0], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 0], [ 1], [-1], [-1], [ 1], [-1], [ 1], [ 1], [ 0], [-1], [ 1], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 1], [ 1], [ 1], [ 0], [-1], [ 1], [-1], [ 0], [-1], [ 1], [-1], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [ 1], [ 1], [ 0], [ 1], [-1], [-1], [ 1], [ 1], [ 0]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 1], [ 1], [-1], [ 1], [-1], [ 0], [ 1], [ 0], [ 1], [-1], [-1], [ 1]]) #### How to generate 10 filament images for every batch only for left and right chirality for 5 batches with image dimension of 224x224 ? - In order to remove one type of chiraity, filament ratio, i.e., tuple(L, R, U): - if L=0 that means left chirality is eliminated. Similarly, this applies to other types as well. ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 10 , filament_ratio = (1, 1, 0), n_batchs = 5, transforms = transforms1, image_dim = 224) ``` ```python for _, imgs, labels in data_loader: print("size of images ",imgs.shape) print("labels for each batch ",labels) ``` size of images torch.Size([10, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [-1], [ 1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [-1], [-1], [ 1], [-1], [-1], [ 1], [ 1], [ 1], [-1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [-1], [-1], [-1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [ 1], [-1], [-1], [ 1], [-1], [-1], [ 1], [-1], [ 1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[-1], [-1], [-1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [ 1]]) %package help Summary: Development documents and examples for augmentation-engine Provides: python3-augmentation-engine-doc %description help ```python pip install augmentation_engine ``` Requirement already satisfied: augmentation_engine in d:\gsu_assignments\semester_2\dl\augmentation_engine (0.0.1) Requirement already satisfied: sortedcontainers in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (2.4.0) Requirement already satisfied: opencv_python in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (4.5.3.56) Requirement already satisfied: torchvision in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (0.10.0) Requirement already satisfied: pillow in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from augmentation_engine) (8.3.2) Requirement already satisfied: numpy>=1.17.3 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from opencv_python->augmentation_engine) (1.21.2) Requirement already satisfied: torch==1.9.0 in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torchvision->augmentation_engine) (1.9.0) Requirement already satisfied: typing-extensions in c:\users\shreejaa talla\pycharmprojects\bbso_fa\venv\lib\site-packages (from torch==1.9.0->torchvision->augmentation_engine) (3.10.0.2) Note: you may need to restart the kernel to use updated packages. ### Import Required Libraries ```python import os from torchvision import transforms import matplotlib.pyplot as plt from filament_augmentation.loader.filament_dataloader import FilamentDataLoader from filament_augmentation.generator.filament_dataset import FilamentDataset from filament_augmentation.metadata.filament_metadata import FilamentMetadata ``` **To find out the number of left, right and unidentified chiralities for an interval of time.** - The code snippet below gives the *chirality distribution*, i.e., the distribution of left, right and unidentified chiralities for an interval of time from "2015-08-01 17:36:15" to "2015-08-09 18:15:17". - Here the petdata has big bear space observatory(BBSO) full disk solar images from (01-09) aug 2015. - The format for start and end time should be YYYY-MM-DD HH:MM:SS. - The ann_file or annotation file is a H-alpha based manually labelled filaments in a json file comes with petdata. ```python __file__ = 'augmentation_process.ipynb' bbso_json = os.path.abspath( os.path.join(os.path.dirname(__file__), 'petdata', 'bbso_json_data','2015_chir_data.json')) filamentInfo = FilamentMetadata(ann_file = bbso_json, start_time = '2015-08-01 00:00:15', end_time = '2015-08-30 23:59:59') filamentInfo.get_chirality_distribution() ``` (22, 30, 186) - In order to generate extra filaments for left, right or unidentified chirality by either balancing the data or getting them in required ratios to train them using an ML algorithm. A filament dataset class should be initialized which is quite similar to that of pytorch dataset class. - The transform list should be list of torchvision [transformations](https://pytorch.org/vision/0.8/transforms.html) - Filament ratio is tuple variable that takes (L,R,U). ### Initializing Filament dataset To initialize filament dataset class follow parameters are required: - bbso_path - BBSO full disk H-alpha solar images comes with petdata, path of the folder. - ann_file - a H-alpha based manually labelled filaments in a json file comes with petdata. - The format for start and end time should be YYYY-MM-DD HH:MM:SS. ```python bbso_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'petdata', '2015')) dataset = FilamentDataset(bbso_path = bbso_path, ann_file = bbso_json, start_time = "2015-08-01 17:36:15", end_time = "2015-08-09 17:36:15") ``` loading annotations into memory... Done (t=0.07s) creating index... index created! ### Setup transformations for data augmentation The transformations function can be refered from [torchvision transforms](https://pytorch.org/vision/0.8/transforms.html) - Here transforms variable should have list of torchvision transforms functions as shown below: ```python transforms1 = [ transforms.ColorJitter(brightness=(0.25,1.25), contrast=(0.25,2.00), saturation=(0.25,2.25)), transforms.RandomRotation(15,expand=False,fill=110) ] ``` ### Initializing data loader - dataset = object of filament dataset class. - batch_size = number of filaments to be generated per batch. - filament_ratio = tuple of three values, i.e., ratios of left, right and unidentified chirality to be generated in each batch. - n_batchs = number of batchs. - transforms = list of torchvision transformations functions - image_dim = image dimensions if image dimension is -1 then image will not be resize, i.e., output is original image size. ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1),n_batchs = 10, transforms = transforms1, image_dim = 224) ``` #### How to generate 3 filament images for every batch with ratio of left as 1, right chirality as 1 and unidentified as 1 for 10 batches with original image dimension and display the images? ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 3 , filament_ratio = (1, 1, 1), n_batchs = 10, transforms = transforms1, image_dim = -1) ``` #### Batch -1 augmented filament images and their following labels (1=R, 0= U, -1=L) ```python for original_imgs, transformed_imgs, labels in data_loader: for org_img, img, label in zip(original_imgs ,transformed_imgs, labels): print("Original image") plt.imshow(org_img, cmap='gray') plt.show() print("Transformed image") plt.imshow(img, cmap='gray') plt.show() print("Label",label) break ``` Original image ![png](document_images/output_18_1.png) Transformed image ![png](document_images/output_18_3.png) Label 0 Original image ![png](document_images/output_18_5.png) Transformed image ![png](document_images/output_18_7.png) Label 1 Original image ![png](document_images/output_18_9.png) Transformed image ![png](document_images/output_18_11.png) Label -1 #### How to generate 12 filament images for every batch with ratio of left as 2, right chirality as 3 and unidentified as 1 for 5 batches with image dimension of 224x224 ? ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 12 , filament_ratio = (2, 3, 1), n_batchs = 5, transforms = transforms1, image_dim = 224) ``` ```python for _, imgs, labels in data_loader: print("size of images ",imgs.shape) print("labels for each batch ",labels) ``` size of images torch.Size([12, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [-1], [ 0], [ 1], [-1], [ 1], [ 1], [ 1], [ 0], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 0], [ 1], [-1], [-1], [ 1], [-1], [ 1], [ 1], [ 0], [-1], [ 1], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 1], [ 1], [ 1], [ 0], [-1], [ 1], [-1], [ 0], [-1], [ 1], [-1], [ 1]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [ 1], [ 1], [ 0], [ 1], [-1], [-1], [ 1], [ 1], [ 0]]) size of images torch.Size([12, 224, 224]) labels for each batch tensor([[ 1], [ 1], [-1], [ 1], [-1], [ 0], [ 1], [ 0], [ 1], [-1], [-1], [ 1]]) #### How to generate 10 filament images for every batch only for left and right chirality for 5 batches with image dimension of 224x224 ? - In order to remove one type of chiraity, filament ratio, i.e., tuple(L, R, U): - if L=0 that means left chirality is eliminated. Similarly, this applies to other types as well. ```python data_loader = FilamentDataLoader(dataset = dataset,batch_size = 10 , filament_ratio = (1, 1, 0), n_batchs = 5, transforms = transforms1, image_dim = 224) ``` ```python for _, imgs, labels in data_loader: print("size of images ",imgs.shape) print("labels for each batch ",labels) ``` size of images torch.Size([10, 224, 224]) labels for each batch tensor([[-1], [-1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [-1], [ 1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [-1], [-1], [ 1], [-1], [-1], [ 1], [ 1], [ 1], [-1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [-1], [-1], [-1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[ 1], [ 1], [-1], [-1], [ 1], [-1], [-1], [ 1], [-1], [ 1]]) size of images torch.Size([10, 224, 224]) labels for each batch tensor([[-1], [-1], [-1], [ 1], [ 1], [ 1], [-1], [ 1], [-1], [ 1]]) %prep %autosetup -n augmentation_engine-0.1.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-augmentation-engine -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Jun 09 2023 Python_Bot - 0.1.2-1 - Package Spec generated