%global _empty_manifest_terminate_build 0 Name: python-spectrafit Version: 0.18.2 Release: 1 Summary: Fast fitting of 2D- and 3D-Spectra with established routines License: BSD-3-Clause URL: https://pypi.org/project/spectrafit/ Source0: https://mirrors.aliyun.com/pypi/web/packages/87/da/6d40aaa3743fc7faa85a67fb79a283f9393f9cde04893eccd7e0c71f748e/spectrafit-0.18.2.tar.gz BuildArch: noarch Requires: python3-PyYAML Requires: python3-art Requires: python3-dash-bootstrap-components Requires: python3-dash-bootstrap-templates Requires: python3-dtale Requires: python3-emcee Requires: python3-ipywidgets Requires: python3-itables Requires: python3-jupyter-dash Requires: python3-jupyterlab Requires: python3-kaleido Requires: python3-lmfit Requires: python3-networkx[all] Requires: python3-numdifftools Requires: python3-numpy Requires: python3-openpyxl Requires: python3-pandas Requires: python3-plotly Requires: python3-pydantic Requires: python3-pydot Requires: python3-scikit-learn Requires: python3-seaborn Requires: python3-tabulate Requires: python3-tomli Requires: python3-tomli-w Requires: python3-tqdm %description [![CI - Python Package](https://github.com/Anselmoo/spectrafit/actions/workflows/python-ci.yml/badge.svg?branch=main)](https://github.com/Anselmoo/spectrafit/actions/workflows/python-ci.yml) [![codecov](https://codecov.io/gh/Anselmoo/spectrafit/branch/main/graph/badge.svg?token=pNIMKwWsO2)](https://codecov.io/gh/Anselmoo/spectrafit) [![PyPI](https://img.shields.io/pypi/v/spectrafit?logo=PyPi&logoColor=yellow)](https://pypi.org/project/spectrafit/) [![Conda](https://img.shields.io/conda/v/conda-forge/spectrafit?label=Anaconda.org&logo=anaconda)](https://github.com/conda-forge/spectrafit-feedstock) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/spectrafit?color=gree&logo=Python&logoColor=yellow)](https://pypi.org/project/spectrafit/) [![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Anselmoo/spectrafit/main.svg)](https://results.pre-commit.ci/latest/github/Anselmoo/spectrafit/main)
# SpectraFit `SpectraFit` is a Python tool for quick data fitting based on the regular expression of distribution and linear functions via the command line (CMD) or [Jupyter Notebook](https://jupyter.org) It is designed to be easy to use and supports all common ASCII data formats. SpectraFit runs on **Linux**, **Windows**, and **MacOS**. ## Scope - Fitting of 2D data, also with multiple columns as _global fitting_ - Using established and advanced solver methods - Extensibility of the fitting function - Guarantee traceability of the fitting results - Saving all results in a _SQL-like-format_ (`CSV`) for publications - Saving all results in a _NoSQL-like-format_ (`JSON`) for project management - Having an API interface for Graph-databases `SpectraFit` is a tool designed for researchers and scientists who require immediate data fitting to a model. It proves to be especially beneficial for individuals working with vast datasets or who need to conduct numerous fits within a limited time frame. `SpectraFit's` adaptability to various platforms and data formats makes it a versatile tool that caters to a broad spectrum of scientific applications. ## Installation via pip: ```terminal pip install spectrafit # with support for Jupyter Notebook pip install spectrafit[jupyter] # with support for the dashboard in the Jupyter Notebook pip install spectrafit[jupyter-dash] # with support to visualize pkl-files as graph pip install spectrafit[graph] # with all upcomming features pip install spectrafit[all] # Upgrade pip install spectrafit --upgrade ``` via conda, see also [conda-forge](https://github.com/conda-forge/spectrafit-feedstock): ```terminal conda install -c conda-forge spectrafit # with support for Jupyter Notebook conda install -c conda-forge spectrafit-jupyter # with all upcomming features conda install -c conda-forge spectrafit-all ``` ## Usage `SpectraFit` needs as command line tool only two things: 1. The reference data, which should be fitted. 2. The input file, which contains the initial model. As model files [json](https://en.wikipedia.org/wiki/JSON), [toml](https://en.wikipedia.org/wiki/TOML), and [yaml](https://en.wikipedia.org/wiki/YAML) are supported. By making use of the python `**kwargs` feature, the input file can call most of the following functions of [LMFIT](https://lmfit.github.io/lmfit-py/index.html). LMFIT is the workhorse for the fit optimization, which is macro wrapper based on: 1. [NumPy](https://www.numpy.org/) 2. [SciPy](https://www.scipy.org/) 3. [uncertainties](https://pythonhosted.org/uncertainties/) In case of `SpectraFit`, we have further extend the package by: 1. [Pandas](https://pandas.pydata.org/) 2. [statsmodels](https://www.statsmodels.org/stable/index.html) 3. [numdifftools](https://github.com/pbrod/numdifftools) 4. [Matplotlib](https://matplotlib.org/) in combination with [Seaborn](https://seaborn.pydata.org/) ```terminal spectrafit data_file.txt -i input_file.json ``` ```terminal usage: spectrafit [-h] [-o OUTFILE] [-i INPUT] [-ov] [-e0 ENERGY_START] [-e1 ENERGY_STOP] [-s SMOOTH] [-sh SHIFT] [-c COLUMN COLUMN] [-sep { ,,,;,:,|, ,s+}] [-dec {.,,}] [-hd HEADER] [-g {0,1,2}] [-auto] [-np] [-v] [-vb {0,1,2}] infile Fast Fitting Program for ascii txt files. positional arguments: infile Filename of the spectra data optional arguments: -h, --help show this help message and exit -o OUTFILE, --outfile OUTFILE Filename for the export, default to set to 'spectrafit_results'. -i INPUT, --input INPUT Filename for the input parameter, default to set to 'fitting_input.toml'.Supported fileformats are: '*.json', '*.yml', '*.yaml', and '*.toml' -ov, --oversampling Oversampling the spectra by using factor of 5; default to False. -e0 ENERGY_START, --energy_start ENERGY_START Starting energy in eV; default to start of energy. -e1 ENERGY_STOP, --energy_stop ENERGY_STOP Ending energy in eV; default to end of energy. -s SMOOTH, --smooth SMOOTH Number of smooth points for lmfit; default to 0. -sh SHIFT, --shift SHIFT Constant applied energy shift; default to 0.0. -c COLUMN COLUMN, --column COLUMN COLUMN Selected columns for the energy- and intensity-values; default to '0' for energy (x-axis) and '1' for intensity (y-axis). In case of working with header, the column should be set to the column names as 'str'; default to 0 and 1. -sep { ,,,;,:,|, ,s+}, --separator { ,,,;,:,|, ,s+} Redefine the type of separator; default to ' '. -dec {.,,}, --decimal {.,,} Type of decimal separator; default to '.'. -hd HEADER, --header HEADER Selected the header for the dataframe; default to None. -cm COMMENT, --comment COMMENT Lines with comment characters like '#' should not be parsed; default to None. -g {0,1,2}, --global_ {0,1,2} Perform a global fit over the complete dataframe. The options are '0' for classic fit (default). The option '1' for global fitting with auto-definition of the peaks depending on the column size and '2' for self-defined global fitting routines. -auto, --autopeak Auto detection of peaks in the spectra based on `SciPy`. The position, height, and width are used as estimation for the `Gaussian` models.The default option is 'False' for manual peak definition. -np, --noplot No plotting the spectra and the fit of `SpectraFit`. -v, --version Display the current version of `SpectraFit`. -vb {0,1,2}, --verbose {0,1,2} Display the initial configuration parameters and fit results, as a table '1', as a dictionary '2', or not in the terminal '0'. The default option is set to 1 for table `printout`. ``` ### Jupyter Notebook Open the `Jupyter Notebook` and run the following code: ```terminal spectrafit-jupyter ``` or via Docker Image: ```terminal docker pull ghcr.io/anselmoo/spectrafit:latest docker run -it -p 8888:8888 spectrafit:latest ``` or just: ```terminal docker run -p 8888:8888 ghcr.io/anselmoo/spectrafit:latest ``` Next define your initial model and the reference data: ```python from spectrafit.plugins.notebook import SpectraFitNotebook import pandas as pd df = pd.read_csv( "https://raw.githubusercontent.com/Anselmoo/spectrafit/main/Examples/data.csv" ) initial_model = [ { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 0}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 1}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 1}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, ] spf = SpectraFitNotebook(df=df, x_column="Energy", y_column="Noisy") spf.solver_model(initial_model) ``` Which results in the following output: ![img_jupyter](https://github.com/Anselmoo/spectrafit/blob/8962a277b0c3d2aa05970617f0ac323a07de2fec/docs/images/jupyter_plot.png?raw=true) ## Documentation Please see the [extended documentation](https://anselmoo.github.io/spectrafit/) for the full usage of `SpectraFit`. %package -n python3-spectrafit Summary: Fast fitting of 2D- and 3D-Spectra with established routines Provides: python-spectrafit BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-spectrafit [![CI - Python Package](https://github.com/Anselmoo/spectrafit/actions/workflows/python-ci.yml/badge.svg?branch=main)](https://github.com/Anselmoo/spectrafit/actions/workflows/python-ci.yml) [![codecov](https://codecov.io/gh/Anselmoo/spectrafit/branch/main/graph/badge.svg?token=pNIMKwWsO2)](https://codecov.io/gh/Anselmoo/spectrafit) [![PyPI](https://img.shields.io/pypi/v/spectrafit?logo=PyPi&logoColor=yellow)](https://pypi.org/project/spectrafit/) [![Conda](https://img.shields.io/conda/v/conda-forge/spectrafit?label=Anaconda.org&logo=anaconda)](https://github.com/conda-forge/spectrafit-feedstock) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/spectrafit?color=gree&logo=Python&logoColor=yellow)](https://pypi.org/project/spectrafit/) [![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Anselmoo/spectrafit/main.svg)](https://results.pre-commit.ci/latest/github/Anselmoo/spectrafit/main)
# SpectraFit `SpectraFit` is a Python tool for quick data fitting based on the regular expression of distribution and linear functions via the command line (CMD) or [Jupyter Notebook](https://jupyter.org) It is designed to be easy to use and supports all common ASCII data formats. SpectraFit runs on **Linux**, **Windows**, and **MacOS**. ## Scope - Fitting of 2D data, also with multiple columns as _global fitting_ - Using established and advanced solver methods - Extensibility of the fitting function - Guarantee traceability of the fitting results - Saving all results in a _SQL-like-format_ (`CSV`) for publications - Saving all results in a _NoSQL-like-format_ (`JSON`) for project management - Having an API interface for Graph-databases `SpectraFit` is a tool designed for researchers and scientists who require immediate data fitting to a model. It proves to be especially beneficial for individuals working with vast datasets or who need to conduct numerous fits within a limited time frame. `SpectraFit's` adaptability to various platforms and data formats makes it a versatile tool that caters to a broad spectrum of scientific applications. ## Installation via pip: ```terminal pip install spectrafit # with support for Jupyter Notebook pip install spectrafit[jupyter] # with support for the dashboard in the Jupyter Notebook pip install spectrafit[jupyter-dash] # with support to visualize pkl-files as graph pip install spectrafit[graph] # with all upcomming features pip install spectrafit[all] # Upgrade pip install spectrafit --upgrade ``` via conda, see also [conda-forge](https://github.com/conda-forge/spectrafit-feedstock): ```terminal conda install -c conda-forge spectrafit # with support for Jupyter Notebook conda install -c conda-forge spectrafit-jupyter # with all upcomming features conda install -c conda-forge spectrafit-all ``` ## Usage `SpectraFit` needs as command line tool only two things: 1. The reference data, which should be fitted. 2. The input file, which contains the initial model. As model files [json](https://en.wikipedia.org/wiki/JSON), [toml](https://en.wikipedia.org/wiki/TOML), and [yaml](https://en.wikipedia.org/wiki/YAML) are supported. By making use of the python `**kwargs` feature, the input file can call most of the following functions of [LMFIT](https://lmfit.github.io/lmfit-py/index.html). LMFIT is the workhorse for the fit optimization, which is macro wrapper based on: 1. [NumPy](https://www.numpy.org/) 2. [SciPy](https://www.scipy.org/) 3. [uncertainties](https://pythonhosted.org/uncertainties/) In case of `SpectraFit`, we have further extend the package by: 1. [Pandas](https://pandas.pydata.org/) 2. [statsmodels](https://www.statsmodels.org/stable/index.html) 3. [numdifftools](https://github.com/pbrod/numdifftools) 4. [Matplotlib](https://matplotlib.org/) in combination with [Seaborn](https://seaborn.pydata.org/) ```terminal spectrafit data_file.txt -i input_file.json ``` ```terminal usage: spectrafit [-h] [-o OUTFILE] [-i INPUT] [-ov] [-e0 ENERGY_START] [-e1 ENERGY_STOP] [-s SMOOTH] [-sh SHIFT] [-c COLUMN COLUMN] [-sep { ,,,;,:,|, ,s+}] [-dec {.,,}] [-hd HEADER] [-g {0,1,2}] [-auto] [-np] [-v] [-vb {0,1,2}] infile Fast Fitting Program for ascii txt files. positional arguments: infile Filename of the spectra data optional arguments: -h, --help show this help message and exit -o OUTFILE, --outfile OUTFILE Filename for the export, default to set to 'spectrafit_results'. -i INPUT, --input INPUT Filename for the input parameter, default to set to 'fitting_input.toml'.Supported fileformats are: '*.json', '*.yml', '*.yaml', and '*.toml' -ov, --oversampling Oversampling the spectra by using factor of 5; default to False. -e0 ENERGY_START, --energy_start ENERGY_START Starting energy in eV; default to start of energy. -e1 ENERGY_STOP, --energy_stop ENERGY_STOP Ending energy in eV; default to end of energy. -s SMOOTH, --smooth SMOOTH Number of smooth points for lmfit; default to 0. -sh SHIFT, --shift SHIFT Constant applied energy shift; default to 0.0. -c COLUMN COLUMN, --column COLUMN COLUMN Selected columns for the energy- and intensity-values; default to '0' for energy (x-axis) and '1' for intensity (y-axis). In case of working with header, the column should be set to the column names as 'str'; default to 0 and 1. -sep { ,,,;,:,|, ,s+}, --separator { ,,,;,:,|, ,s+} Redefine the type of separator; default to ' '. -dec {.,,}, --decimal {.,,} Type of decimal separator; default to '.'. -hd HEADER, --header HEADER Selected the header for the dataframe; default to None. -cm COMMENT, --comment COMMENT Lines with comment characters like '#' should not be parsed; default to None. -g {0,1,2}, --global_ {0,1,2} Perform a global fit over the complete dataframe. The options are '0' for classic fit (default). The option '1' for global fitting with auto-definition of the peaks depending on the column size and '2' for self-defined global fitting routines. -auto, --autopeak Auto detection of peaks in the spectra based on `SciPy`. The position, height, and width are used as estimation for the `Gaussian` models.The default option is 'False' for manual peak definition. -np, --noplot No plotting the spectra and the fit of `SpectraFit`. -v, --version Display the current version of `SpectraFit`. -vb {0,1,2}, --verbose {0,1,2} Display the initial configuration parameters and fit results, as a table '1', as a dictionary '2', or not in the terminal '0'. The default option is set to 1 for table `printout`. ``` ### Jupyter Notebook Open the `Jupyter Notebook` and run the following code: ```terminal spectrafit-jupyter ``` or via Docker Image: ```terminal docker pull ghcr.io/anselmoo/spectrafit:latest docker run -it -p 8888:8888 spectrafit:latest ``` or just: ```terminal docker run -p 8888:8888 ghcr.io/anselmoo/spectrafit:latest ``` Next define your initial model and the reference data: ```python from spectrafit.plugins.notebook import SpectraFitNotebook import pandas as pd df = pd.read_csv( "https://raw.githubusercontent.com/Anselmoo/spectrafit/main/Examples/data.csv" ) initial_model = [ { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 0}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 1}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 1}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, ] spf = SpectraFitNotebook(df=df, x_column="Energy", y_column="Noisy") spf.solver_model(initial_model) ``` Which results in the following output: ![img_jupyter](https://github.com/Anselmoo/spectrafit/blob/8962a277b0c3d2aa05970617f0ac323a07de2fec/docs/images/jupyter_plot.png?raw=true) ## Documentation Please see the [extended documentation](https://anselmoo.github.io/spectrafit/) for the full usage of `SpectraFit`. %package help Summary: Development documents and examples for spectrafit Provides: python3-spectrafit-doc %description help [![CI - Python Package](https://github.com/Anselmoo/spectrafit/actions/workflows/python-ci.yml/badge.svg?branch=main)](https://github.com/Anselmoo/spectrafit/actions/workflows/python-ci.yml) [![codecov](https://codecov.io/gh/Anselmoo/spectrafit/branch/main/graph/badge.svg?token=pNIMKwWsO2)](https://codecov.io/gh/Anselmoo/spectrafit) [![PyPI](https://img.shields.io/pypi/v/spectrafit?logo=PyPi&logoColor=yellow)](https://pypi.org/project/spectrafit/) [![Conda](https://img.shields.io/conda/v/conda-forge/spectrafit?label=Anaconda.org&logo=anaconda)](https://github.com/conda-forge/spectrafit-feedstock) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/spectrafit?color=gree&logo=Python&logoColor=yellow)](https://pypi.org/project/spectrafit/) [![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Anselmoo/spectrafit/main.svg)](https://results.pre-commit.ci/latest/github/Anselmoo/spectrafit/main)
# SpectraFit `SpectraFit` is a Python tool for quick data fitting based on the regular expression of distribution and linear functions via the command line (CMD) or [Jupyter Notebook](https://jupyter.org) It is designed to be easy to use and supports all common ASCII data formats. SpectraFit runs on **Linux**, **Windows**, and **MacOS**. ## Scope - Fitting of 2D data, also with multiple columns as _global fitting_ - Using established and advanced solver methods - Extensibility of the fitting function - Guarantee traceability of the fitting results - Saving all results in a _SQL-like-format_ (`CSV`) for publications - Saving all results in a _NoSQL-like-format_ (`JSON`) for project management - Having an API interface for Graph-databases `SpectraFit` is a tool designed for researchers and scientists who require immediate data fitting to a model. It proves to be especially beneficial for individuals working with vast datasets or who need to conduct numerous fits within a limited time frame. `SpectraFit's` adaptability to various platforms and data formats makes it a versatile tool that caters to a broad spectrum of scientific applications. ## Installation via pip: ```terminal pip install spectrafit # with support for Jupyter Notebook pip install spectrafit[jupyter] # with support for the dashboard in the Jupyter Notebook pip install spectrafit[jupyter-dash] # with support to visualize pkl-files as graph pip install spectrafit[graph] # with all upcomming features pip install spectrafit[all] # Upgrade pip install spectrafit --upgrade ``` via conda, see also [conda-forge](https://github.com/conda-forge/spectrafit-feedstock): ```terminal conda install -c conda-forge spectrafit # with support for Jupyter Notebook conda install -c conda-forge spectrafit-jupyter # with all upcomming features conda install -c conda-forge spectrafit-all ``` ## Usage `SpectraFit` needs as command line tool only two things: 1. The reference data, which should be fitted. 2. The input file, which contains the initial model. As model files [json](https://en.wikipedia.org/wiki/JSON), [toml](https://en.wikipedia.org/wiki/TOML), and [yaml](https://en.wikipedia.org/wiki/YAML) are supported. By making use of the python `**kwargs` feature, the input file can call most of the following functions of [LMFIT](https://lmfit.github.io/lmfit-py/index.html). LMFIT is the workhorse for the fit optimization, which is macro wrapper based on: 1. [NumPy](https://www.numpy.org/) 2. [SciPy](https://www.scipy.org/) 3. [uncertainties](https://pythonhosted.org/uncertainties/) In case of `SpectraFit`, we have further extend the package by: 1. [Pandas](https://pandas.pydata.org/) 2. [statsmodels](https://www.statsmodels.org/stable/index.html) 3. [numdifftools](https://github.com/pbrod/numdifftools) 4. [Matplotlib](https://matplotlib.org/) in combination with [Seaborn](https://seaborn.pydata.org/) ```terminal spectrafit data_file.txt -i input_file.json ``` ```terminal usage: spectrafit [-h] [-o OUTFILE] [-i INPUT] [-ov] [-e0 ENERGY_START] [-e1 ENERGY_STOP] [-s SMOOTH] [-sh SHIFT] [-c COLUMN COLUMN] [-sep { ,,,;,:,|, ,s+}] [-dec {.,,}] [-hd HEADER] [-g {0,1,2}] [-auto] [-np] [-v] [-vb {0,1,2}] infile Fast Fitting Program for ascii txt files. positional arguments: infile Filename of the spectra data optional arguments: -h, --help show this help message and exit -o OUTFILE, --outfile OUTFILE Filename for the export, default to set to 'spectrafit_results'. -i INPUT, --input INPUT Filename for the input parameter, default to set to 'fitting_input.toml'.Supported fileformats are: '*.json', '*.yml', '*.yaml', and '*.toml' -ov, --oversampling Oversampling the spectra by using factor of 5; default to False. -e0 ENERGY_START, --energy_start ENERGY_START Starting energy in eV; default to start of energy. -e1 ENERGY_STOP, --energy_stop ENERGY_STOP Ending energy in eV; default to end of energy. -s SMOOTH, --smooth SMOOTH Number of smooth points for lmfit; default to 0. -sh SHIFT, --shift SHIFT Constant applied energy shift; default to 0.0. -c COLUMN COLUMN, --column COLUMN COLUMN Selected columns for the energy- and intensity-values; default to '0' for energy (x-axis) and '1' for intensity (y-axis). In case of working with header, the column should be set to the column names as 'str'; default to 0 and 1. -sep { ,,,;,:,|, ,s+}, --separator { ,,,;,:,|, ,s+} Redefine the type of separator; default to ' '. -dec {.,,}, --decimal {.,,} Type of decimal separator; default to '.'. -hd HEADER, --header HEADER Selected the header for the dataframe; default to None. -cm COMMENT, --comment COMMENT Lines with comment characters like '#' should not be parsed; default to None. -g {0,1,2}, --global_ {0,1,2} Perform a global fit over the complete dataframe. The options are '0' for classic fit (default). The option '1' for global fitting with auto-definition of the peaks depending on the column size and '2' for self-defined global fitting routines. -auto, --autopeak Auto detection of peaks in the spectra based on `SciPy`. The position, height, and width are used as estimation for the `Gaussian` models.The default option is 'False' for manual peak definition. -np, --noplot No plotting the spectra and the fit of `SpectraFit`. -v, --version Display the current version of `SpectraFit`. -vb {0,1,2}, --verbose {0,1,2} Display the initial configuration parameters and fit results, as a table '1', as a dictionary '2', or not in the terminal '0'. The default option is set to 1 for table `printout`. ``` ### Jupyter Notebook Open the `Jupyter Notebook` and run the following code: ```terminal spectrafit-jupyter ``` or via Docker Image: ```terminal docker pull ghcr.io/anselmoo/spectrafit:latest docker run -it -p 8888:8888 spectrafit:latest ``` or just: ```terminal docker run -p 8888:8888 ghcr.io/anselmoo/spectrafit:latest ``` Next define your initial model and the reference data: ```python from spectrafit.plugins.notebook import SpectraFitNotebook import pandas as pd df = pd.read_csv( "https://raw.githubusercontent.com/Anselmoo/spectrafit/main/Examples/data.csv" ) initial_model = [ { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 0}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 1}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, { "pseudovoigt": { "amplitude": {"max": 2, "min": 0, "vary": True, "value": 1}, "center": {"max": 2, "min": -2, "vary": True, "value": 1}, "fwhmg": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, "fwhml": {"max": 0.4, "min": 0.1, "vary": True, "value": 0.21}, } }, ] spf = SpectraFitNotebook(df=df, x_column="Energy", y_column="Noisy") spf.solver_model(initial_model) ``` Which results in the following output: ![img_jupyter](https://github.com/Anselmoo/spectrafit/blob/8962a277b0c3d2aa05970617f0ac323a07de2fec/docs/images/jupyter_plot.png?raw=true) ## Documentation Please see the [extended documentation](https://anselmoo.github.io/spectrafit/) for the full usage of `SpectraFit`. %prep %autosetup -n spectrafit-0.18.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-spectrafit -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Jun 09 2023 Python_Bot