%global _empty_manifest_terminate_build 0 Name: python-pytorch-pretrained-vit Version: 0.0.7 Release: 1 Summary: Visual Transformers (ViT) in PyTorch. License: Apache URL: https://github.com/lukemelas/ViT-PyTorch Source0: https://mirrors.aliyun.com/pypi/web/packages/02/8d/b404fe410a984ce2bc95a8ce02d397e3b8b12d6dd3118db6ac9b8edaa370/pytorch-pretrained-vit-0.0.7.tar.gz BuildArch: noarch %description # ViT PyTorch ### Quickstart Install with `pip install pytorch_pretrained_vit` and load a pretrained ViT with: ```python from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) ``` Or find a Google Colab example [here](https://colab.research.google.com/drive/1muZ4QFgVfwALgqmrfOkp7trAvqDemckO?usp=sharing). ### Overview This repository contains an op-for-op PyTorch reimplementation of the [Visual Transformer](https://openreview.net/forum?id=YicbFdNTTy) architecture from [Google](https://github.com/google-research/vision_transformer), along with pre-trained models and examples. The goal of this implementation is to be simple, highly extensible, and easy to integrate into your own projects. At the moment, you can easily: * Load pretrained ViT models * Evaluate on ImageNet or your own data * Finetune ViT on your own dataset _(Upcoming features)_ Coming soon: * Train ViT from scratch on ImageNet (1K) * Export to ONNX for efficient inference ### Table of contents 1. [About ViT](#about-vit) 2. [About ViT-PyTorch](#about-vit-pytorch) 3. [Installation](#installation) 4. [Usage](#usage) * [Load pretrained models](#loading-pretrained-models) * [Example: Classify](#example-classification) 6. [Contributing](#contributing) ### About ViT Visual Transformers (ViT) are a straightforward application of the [transformer architecture](https://arxiv.org/abs/1706.03762) to image classification. Even in computer vision, it seems, attention is all you need. The ViT architecture works as follows: (1) it considers an image as a 1-dimensional sequence of patches, (2) it prepends a classification token to the sequence, (3) it passes these patches through a transformer encoder (like [BERT](https://arxiv.org/abs/1810.04805)), (4) it passes the first token of the output of the transformer through a small MLP to obtain the classification logits. ViT is trained on a large-scale dataset (ImageNet-21k) with a huge amount of compute.
### About ViT-PyTorch ViT-PyTorch is a PyTorch re-implementation of ViT. It is consistent with the [original Jax implementation](https://github.com/google-research/vision_transformer), so that it's easy to load Jax-pretrained weights. At the same time, we aim to make our PyTorch implementation as simple, flexible, and extensible as possible. ### Installation Install with pip: ```bash pip install pytorch_pretrained_vit ``` Or from source: ```bash git clone https://github.com/lukemelas/ViT-PyTorch cd ViT-Pytorch pip install -e . ``` ### Usage #### Loading pretrained models Loading a pretrained model is easy: ```python from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) ``` Details about the models are below: | *Name* |* Pretrained on *|*Finetuned on*|*Available? *| |:-----------------:|:---------------:|:------------:|:-----------:| | `B_16` | ImageNet-21k | - | ✓ | | `B_32` | ImageNet-21k | - | ✓ | | `L_16` | ImageNet-21k | - | - | | `L_32` | ImageNet-21k | - | ✓ | | `B_16_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `B_32_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `L_16_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `L_32_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | #### Custom ViT Loading custom configurations is just as easy: ```python from pytorch_pretrained_vit import ViT # The following is equivalent to ViT('B_16') config = dict(hidden_size=512, num_heads=8, num_layers=6) model = ViT.from_config(config) ``` #### Example: Classification Below is a simple, complete example. It may also be found as a Jupyter notebook in `examples/simple` or as a [Colab Notebook](). ```python import json from PIL import Image import torch from torchvision import transforms # Load ViT from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) model.eval() # Load image # NOTE: Assumes an image `img.jpg` exists in the current directory img = transforms.Compose([ transforms.Resize((384, 384)), transforms.ToTensor(), transforms.Normalize(0.5, 0.5), ])(Image.open('img.jpg')).unsqueeze(0) print(img.shape) # torch.Size([1, 3, 384, 384]) # Classify with torch.no_grad(): outputs = model(img) print(outputs.shape) # (1, 1000) ``` #### ImageNet See `examples/imagenet` for details about evaluating on ImageNet. #### Credit Other great repositories with this model include: - [Ross Wightman's repo](https://github.com/rwightman/pytorch-image-models) - [Phil Wang's repo](https://github.com/lucidrains/vit-pytorch) ### Contributing If you find a bug, create a GitHub issue, or even better, submit a pull request. Similarly, if you have questions, simply post them as GitHub issues. I look forward to seeing what the community does with these models! %package -n python3-pytorch-pretrained-vit Summary: Visual Transformers (ViT) in PyTorch. Provides: python-pytorch-pretrained-vit BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pytorch-pretrained-vit # ViT PyTorch ### Quickstart Install with `pip install pytorch_pretrained_vit` and load a pretrained ViT with: ```python from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) ``` Or find a Google Colab example [here](https://colab.research.google.com/drive/1muZ4QFgVfwALgqmrfOkp7trAvqDemckO?usp=sharing). ### Overview This repository contains an op-for-op PyTorch reimplementation of the [Visual Transformer](https://openreview.net/forum?id=YicbFdNTTy) architecture from [Google](https://github.com/google-research/vision_transformer), along with pre-trained models and examples. The goal of this implementation is to be simple, highly extensible, and easy to integrate into your own projects. At the moment, you can easily: * Load pretrained ViT models * Evaluate on ImageNet or your own data * Finetune ViT on your own dataset _(Upcoming features)_ Coming soon: * Train ViT from scratch on ImageNet (1K) * Export to ONNX for efficient inference ### Table of contents 1. [About ViT](#about-vit) 2. [About ViT-PyTorch](#about-vit-pytorch) 3. [Installation](#installation) 4. [Usage](#usage) * [Load pretrained models](#loading-pretrained-models) * [Example: Classify](#example-classification) 6. [Contributing](#contributing) ### About ViT Visual Transformers (ViT) are a straightforward application of the [transformer architecture](https://arxiv.org/abs/1706.03762) to image classification. Even in computer vision, it seems, attention is all you need. The ViT architecture works as follows: (1) it considers an image as a 1-dimensional sequence of patches, (2) it prepends a classification token to the sequence, (3) it passes these patches through a transformer encoder (like [BERT](https://arxiv.org/abs/1810.04805)), (4) it passes the first token of the output of the transformer through a small MLP to obtain the classification logits. ViT is trained on a large-scale dataset (ImageNet-21k) with a huge amount of compute.
### About ViT-PyTorch ViT-PyTorch is a PyTorch re-implementation of ViT. It is consistent with the [original Jax implementation](https://github.com/google-research/vision_transformer), so that it's easy to load Jax-pretrained weights. At the same time, we aim to make our PyTorch implementation as simple, flexible, and extensible as possible. ### Installation Install with pip: ```bash pip install pytorch_pretrained_vit ``` Or from source: ```bash git clone https://github.com/lukemelas/ViT-PyTorch cd ViT-Pytorch pip install -e . ``` ### Usage #### Loading pretrained models Loading a pretrained model is easy: ```python from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) ``` Details about the models are below: | *Name* |* Pretrained on *|*Finetuned on*|*Available? *| |:-----------------:|:---------------:|:------------:|:-----------:| | `B_16` | ImageNet-21k | - | ✓ | | `B_32` | ImageNet-21k | - | ✓ | | `L_16` | ImageNet-21k | - | - | | `L_32` | ImageNet-21k | - | ✓ | | `B_16_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `B_32_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `L_16_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `L_32_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | #### Custom ViT Loading custom configurations is just as easy: ```python from pytorch_pretrained_vit import ViT # The following is equivalent to ViT('B_16') config = dict(hidden_size=512, num_heads=8, num_layers=6) model = ViT.from_config(config) ``` #### Example: Classification Below is a simple, complete example. It may also be found as a Jupyter notebook in `examples/simple` or as a [Colab Notebook](). ```python import json from PIL import Image import torch from torchvision import transforms # Load ViT from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) model.eval() # Load image # NOTE: Assumes an image `img.jpg` exists in the current directory img = transforms.Compose([ transforms.Resize((384, 384)), transforms.ToTensor(), transforms.Normalize(0.5, 0.5), ])(Image.open('img.jpg')).unsqueeze(0) print(img.shape) # torch.Size([1, 3, 384, 384]) # Classify with torch.no_grad(): outputs = model(img) print(outputs.shape) # (1, 1000) ``` #### ImageNet See `examples/imagenet` for details about evaluating on ImageNet. #### Credit Other great repositories with this model include: - [Ross Wightman's repo](https://github.com/rwightman/pytorch-image-models) - [Phil Wang's repo](https://github.com/lucidrains/vit-pytorch) ### Contributing If you find a bug, create a GitHub issue, or even better, submit a pull request. Similarly, if you have questions, simply post them as GitHub issues. I look forward to seeing what the community does with these models! %package help Summary: Development documents and examples for pytorch-pretrained-vit Provides: python3-pytorch-pretrained-vit-doc %description help # ViT PyTorch ### Quickstart Install with `pip install pytorch_pretrained_vit` and load a pretrained ViT with: ```python from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) ``` Or find a Google Colab example [here](https://colab.research.google.com/drive/1muZ4QFgVfwALgqmrfOkp7trAvqDemckO?usp=sharing). ### Overview This repository contains an op-for-op PyTorch reimplementation of the [Visual Transformer](https://openreview.net/forum?id=YicbFdNTTy) architecture from [Google](https://github.com/google-research/vision_transformer), along with pre-trained models and examples. The goal of this implementation is to be simple, highly extensible, and easy to integrate into your own projects. At the moment, you can easily: * Load pretrained ViT models * Evaluate on ImageNet or your own data * Finetune ViT on your own dataset _(Upcoming features)_ Coming soon: * Train ViT from scratch on ImageNet (1K) * Export to ONNX for efficient inference ### Table of contents 1. [About ViT](#about-vit) 2. [About ViT-PyTorch](#about-vit-pytorch) 3. [Installation](#installation) 4. [Usage](#usage) * [Load pretrained models](#loading-pretrained-models) * [Example: Classify](#example-classification) 6. [Contributing](#contributing) ### About ViT Visual Transformers (ViT) are a straightforward application of the [transformer architecture](https://arxiv.org/abs/1706.03762) to image classification. Even in computer vision, it seems, attention is all you need. The ViT architecture works as follows: (1) it considers an image as a 1-dimensional sequence of patches, (2) it prepends a classification token to the sequence, (3) it passes these patches through a transformer encoder (like [BERT](https://arxiv.org/abs/1810.04805)), (4) it passes the first token of the output of the transformer through a small MLP to obtain the classification logits. ViT is trained on a large-scale dataset (ImageNet-21k) with a huge amount of compute.
### About ViT-PyTorch ViT-PyTorch is a PyTorch re-implementation of ViT. It is consistent with the [original Jax implementation](https://github.com/google-research/vision_transformer), so that it's easy to load Jax-pretrained weights. At the same time, we aim to make our PyTorch implementation as simple, flexible, and extensible as possible. ### Installation Install with pip: ```bash pip install pytorch_pretrained_vit ``` Or from source: ```bash git clone https://github.com/lukemelas/ViT-PyTorch cd ViT-Pytorch pip install -e . ``` ### Usage #### Loading pretrained models Loading a pretrained model is easy: ```python from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) ``` Details about the models are below: | *Name* |* Pretrained on *|*Finetuned on*|*Available? *| |:-----------------:|:---------------:|:------------:|:-----------:| | `B_16` | ImageNet-21k | - | ✓ | | `B_32` | ImageNet-21k | - | ✓ | | `L_16` | ImageNet-21k | - | - | | `L_32` | ImageNet-21k | - | ✓ | | `B_16_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `B_32_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `L_16_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | | `L_32_imagenet1k` | ImageNet-21k | ImageNet-1k | ✓ | #### Custom ViT Loading custom configurations is just as easy: ```python from pytorch_pretrained_vit import ViT # The following is equivalent to ViT('B_16') config = dict(hidden_size=512, num_heads=8, num_layers=6) model = ViT.from_config(config) ``` #### Example: Classification Below is a simple, complete example. It may also be found as a Jupyter notebook in `examples/simple` or as a [Colab Notebook](). ```python import json from PIL import Image import torch from torchvision import transforms # Load ViT from pytorch_pretrained_vit import ViT model = ViT('B_16_imagenet1k', pretrained=True) model.eval() # Load image # NOTE: Assumes an image `img.jpg` exists in the current directory img = transforms.Compose([ transforms.Resize((384, 384)), transforms.ToTensor(), transforms.Normalize(0.5, 0.5), ])(Image.open('img.jpg')).unsqueeze(0) print(img.shape) # torch.Size([1, 3, 384, 384]) # Classify with torch.no_grad(): outputs = model(img) print(outputs.shape) # (1, 1000) ``` #### ImageNet See `examples/imagenet` for details about evaluating on ImageNet. #### Credit Other great repositories with this model include: - [Ross Wightman's repo](https://github.com/rwightman/pytorch-image-models) - [Phil Wang's repo](https://github.com/lucidrains/vit-pytorch) ### Contributing If you find a bug, create a GitHub issue, or even better, submit a pull request. Similarly, if you have questions, simply post them as GitHub issues. I look forward to seeing what the community does with these models! %prep %autosetup -n pytorch-pretrained-vit-0.0.7 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pytorch-pretrained-vit -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 0.0.7-1 - Package Spec generated