%global _empty_manifest_terminate_build 0 Name: python-inference-tools Version: 0.11.0 Release: 1 Summary: A collection of python tools for Bayesian data analysis License: MIT URL: https://github.com/C-bowman/inference-tools Source0: https://mirrors.aliyun.com/pypi/web/packages/f4/34/4666a4890a09786c4be51e2c6ce631942cd0db760666e14425214bea6fee/inference-tools-0.11.0.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scipy Requires: python3-matplotlib Requires: python3-importlib-metadata Requires: python3-sphinx Requires: python3-sphinx-rtd-theme Requires: python3-pytest Requires: python3-pytest-cov Requires: python3-pyqt5 Requires: python3-hypothesis Requires: python3-freezegun %description # inference-tools [![Documentation Status](https://readthedocs.org/projects/inference-tools/badge/?version=stable)](https://inference-tools.readthedocs.io/en/stable/?badge=stable) [![GitHub license](https://img.shields.io/github/license/C-bowman/inference-tools?color=blue)](https://github.com/C-bowman/inference-tools/blob/master/LICENSE) [![PyPI - Downloads](https://img.shields.io/pypi/dm/inference-tools?color=purple)](https://pypi.org/project/inference-tools/) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/inference-tools) [![DOI](https://zenodo.org/badge/149741362.svg)](https://zenodo.org/badge/latestdoi/149741362) This package provides a set of Python-based tools for Bayesian data analysis which are simple to use, allowing them to applied quickly and easily. Inference-tools is not a framework for Bayesian modelling (e.g. like [PyMC](https://docs.pymc.io/)), but instead provides tools to sample from user-defined models using MCMC, and to analyse and visualise the sampling results. ## Features - Implementations of MCMC algorithms like Gibbs sampling and Hamiltonian Monte-Carlo for sampling from user-defined posterior distributions. - Density estimation and plotting tools for analysing and visualising inference results. - Gaussian-process regression and optimisation. | | | | |:-------------------------:|:-------------------------:|:-------------------------:| | [Gibbs Sampling](https://github.com/C-bowman/inference-tools/blob/master/demos/gibbs_sampling_demo.ipynb) 1 | [Hamiltonian Monte-Carlo](https://github.com/C-bowman/inference-tools/blob/master/demos/hamiltonian_mcmc_demo.ipynb) 2 | [Density estimation](https://github.com/C-bowman/inference-tools/blob/master/demos/density_estimation_demo.ipynb) 3 | | Matrix plotting 4 | Highest-density intervals 5 | [GP regression](https://github.com/C-bowman/inference-tools/blob/master/demos/gp_regression_demo.ipynb) 6 | ## Installation inference-tools is available from [PyPI](https://pypi.org/project/inference-tools/), so can be easily installed using [pip](https://pip.pypa.io/en/stable/) as follows: ```bash pip install inference-tools ``` ## Documentation Full documentation is available at [inference-tools.readthedocs.io](https://inference-tools.readthedocs.io/en/stable/). %package -n python3-inference-tools Summary: A collection of python tools for Bayesian data analysis Provides: python-inference-tools BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-inference-tools # inference-tools [![Documentation Status](https://readthedocs.org/projects/inference-tools/badge/?version=stable)](https://inference-tools.readthedocs.io/en/stable/?badge=stable) [![GitHub license](https://img.shields.io/github/license/C-bowman/inference-tools?color=blue)](https://github.com/C-bowman/inference-tools/blob/master/LICENSE) [![PyPI - Downloads](https://img.shields.io/pypi/dm/inference-tools?color=purple)](https://pypi.org/project/inference-tools/) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/inference-tools) [![DOI](https://zenodo.org/badge/149741362.svg)](https://zenodo.org/badge/latestdoi/149741362) This package provides a set of Python-based tools for Bayesian data analysis which are simple to use, allowing them to applied quickly and easily. Inference-tools is not a framework for Bayesian modelling (e.g. like [PyMC](https://docs.pymc.io/)), but instead provides tools to sample from user-defined models using MCMC, and to analyse and visualise the sampling results. ## Features - Implementations of MCMC algorithms like Gibbs sampling and Hamiltonian Monte-Carlo for sampling from user-defined posterior distributions. - Density estimation and plotting tools for analysing and visualising inference results. - Gaussian-process regression and optimisation. | | | | |:-------------------------:|:-------------------------:|:-------------------------:| | [Gibbs Sampling](https://github.com/C-bowman/inference-tools/blob/master/demos/gibbs_sampling_demo.ipynb) 1 | [Hamiltonian Monte-Carlo](https://github.com/C-bowman/inference-tools/blob/master/demos/hamiltonian_mcmc_demo.ipynb) 2 | [Density estimation](https://github.com/C-bowman/inference-tools/blob/master/demos/density_estimation_demo.ipynb) 3 | | Matrix plotting 4 | Highest-density intervals 5 | [GP regression](https://github.com/C-bowman/inference-tools/blob/master/demos/gp_regression_demo.ipynb) 6 | ## Installation inference-tools is available from [PyPI](https://pypi.org/project/inference-tools/), so can be easily installed using [pip](https://pip.pypa.io/en/stable/) as follows: ```bash pip install inference-tools ``` ## Documentation Full documentation is available at [inference-tools.readthedocs.io](https://inference-tools.readthedocs.io/en/stable/). %package help Summary: Development documents and examples for inference-tools Provides: python3-inference-tools-doc %description help # inference-tools [![Documentation Status](https://readthedocs.org/projects/inference-tools/badge/?version=stable)](https://inference-tools.readthedocs.io/en/stable/?badge=stable) [![GitHub license](https://img.shields.io/github/license/C-bowman/inference-tools?color=blue)](https://github.com/C-bowman/inference-tools/blob/master/LICENSE) [![PyPI - Downloads](https://img.shields.io/pypi/dm/inference-tools?color=purple)](https://pypi.org/project/inference-tools/) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/inference-tools) [![DOI](https://zenodo.org/badge/149741362.svg)](https://zenodo.org/badge/latestdoi/149741362) This package provides a set of Python-based tools for Bayesian data analysis which are simple to use, allowing them to applied quickly and easily. Inference-tools is not a framework for Bayesian modelling (e.g. like [PyMC](https://docs.pymc.io/)), but instead provides tools to sample from user-defined models using MCMC, and to analyse and visualise the sampling results. ## Features - Implementations of MCMC algorithms like Gibbs sampling and Hamiltonian Monte-Carlo for sampling from user-defined posterior distributions. - Density estimation and plotting tools for analysing and visualising inference results. - Gaussian-process regression and optimisation. | | | | |:-------------------------:|:-------------------------:|:-------------------------:| | [Gibbs Sampling](https://github.com/C-bowman/inference-tools/blob/master/demos/gibbs_sampling_demo.ipynb) 1 | [Hamiltonian Monte-Carlo](https://github.com/C-bowman/inference-tools/blob/master/demos/hamiltonian_mcmc_demo.ipynb) 2 | [Density estimation](https://github.com/C-bowman/inference-tools/blob/master/demos/density_estimation_demo.ipynb) 3 | | Matrix plotting 4 | Highest-density intervals 5 | [GP regression](https://github.com/C-bowman/inference-tools/blob/master/demos/gp_regression_demo.ipynb) 6 | ## Installation inference-tools is available from [PyPI](https://pypi.org/project/inference-tools/), so can be easily installed using [pip](https://pip.pypa.io/en/stable/) as follows: ```bash pip install inference-tools ``` ## Documentation Full documentation is available at [inference-tools.readthedocs.io](https://inference-tools.readthedocs.io/en/stable/). %prep %autosetup -n inference-tools-0.11.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-inference-tools -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 0.11.0-1 - Package Spec generated