%global _empty_manifest_terminate_build 0 Name: python-grid2demand Version: 0.2.7 Release: 1 Summary: A tool for generating zone-to-zone travel demand based on grid cells or external TAZs License: GPLv3+ URL: https://github.com/asu-trans-ai-lab/grid2demand Source0: https://mirrors.aliyun.com/pypi/web/packages/b3/ee/881a7fc3ae0301e6000cc2bca7f1f664645be5f1a9c0201233578ba10f14/grid2demand-0.2.7.tar.gz BuildArch: noarch Requires: python3-pandas Requires: python3-numpy %description # GRID2DEMAND: A tool for generating zone-to-zone travel demand based on grid cells ## Introduction Grid2demand is an open-source quick demand generation tool based on the trip generation and trip distribution methods of the standard 4-step travel model for teaching transportation planning and applications. By taking advantage of OSM2GMNS tool to obtain routable transportation network from OpenStreetMap, Grid2demand aims to further utilize Point of Interest (POI) data to construct trip demand matrix aligned with standard travel models. You can get access to the introduction video with the link: https://www.youtube.com/watch?v=EfjCERQQGTs&t=1021s ## Quick Start Users can refer to the [code template and test data set](https://github.com/asu-trans-ai-lab/Grid2Demand/) to have a quick start. ## Installation ``` pip install grid2demand ``` If you meet installation issues, please refer to the [user guide](https://github.com/asu-trans-ai-lab/grid2demand/blob/main/README.md) for solutions. ## Simple Example ```python import grid2demand as gd "Step 1: Read Input Network Data" gd.ReadNetworkFiles() "Step 2: Zone Partition" # Option 1: Partition grid into cells (users can customize number of grid cells or cell's width and height in meters) gd.PartitionGrid(number_of_x_blocks=None, number_of_y_blocks=None, cell_width=1000, cell_height=1000) # Option 2: Partition based on Traffic Analysis Zone boundaries with an external input TAZ.csv gd.TAZ2zone() "Step 3: Get Production/Attraction Rates of Each Land Use Type with a Specific Trip Purpose" gd.GetPoiTripRate(trip_purpose=1) # users can customize trip purpose and poi_trip_rate.csv "Step 4: Define Production/Attraction Value of Each Node According to POI Type" gd.GetNodeDemand(residential_production=20, residential_attraction=20, boundary_production=1000, boundary_attraction=1000) # users can customize production and attraction values of residential nodes and boundary nodes "Step 5: Calculate Zone-to-zone Accessibility Matrix by Centroid-to-centroid Straight Distance" gd.ProduceAccessMatrix() "Step 6: Apply Gravity Model to Perform Trip Distribution" gd.RunGravityModel(trip_purpose=1, a=None, b=None, c=None) # users can customize friction factor coefficients under a specific trip purpose "Step 7: Generate Agent" gd.GenerateAgentBasedDemand() ``` ## Visualization Option 1: Open [QGIS](https://www.qgis.org/) and add Delimited Text Layer of the files. Option 2: Upload files to the website of [ASU Trans+AI Lab](https://asu-trans-ai-lab.github.io/index.html#/) and view input and output files. Option 3: Import input_agent.csv to [A/B Street](https://a-b-street.github.io/docs/howto/asu.html) and view dynamic simulation of the demand. ## User guide Users can check the [user guide](https://github.com/asu-trans-ai-lab/grid2demand/blob/main/README.md) for a detailed introduction of grid2demand. %package -n python3-grid2demand Summary: A tool for generating zone-to-zone travel demand based on grid cells or external TAZs Provides: python-grid2demand BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-grid2demand # GRID2DEMAND: A tool for generating zone-to-zone travel demand based on grid cells ## Introduction Grid2demand is an open-source quick demand generation tool based on the trip generation and trip distribution methods of the standard 4-step travel model for teaching transportation planning and applications. By taking advantage of OSM2GMNS tool to obtain routable transportation network from OpenStreetMap, Grid2demand aims to further utilize Point of Interest (POI) data to construct trip demand matrix aligned with standard travel models. You can get access to the introduction video with the link: https://www.youtube.com/watch?v=EfjCERQQGTs&t=1021s ## Quick Start Users can refer to the [code template and test data set](https://github.com/asu-trans-ai-lab/Grid2Demand/) to have a quick start. ## Installation ``` pip install grid2demand ``` If you meet installation issues, please refer to the [user guide](https://github.com/asu-trans-ai-lab/grid2demand/blob/main/README.md) for solutions. ## Simple Example ```python import grid2demand as gd "Step 1: Read Input Network Data" gd.ReadNetworkFiles() "Step 2: Zone Partition" # Option 1: Partition grid into cells (users can customize number of grid cells or cell's width and height in meters) gd.PartitionGrid(number_of_x_blocks=None, number_of_y_blocks=None, cell_width=1000, cell_height=1000) # Option 2: Partition based on Traffic Analysis Zone boundaries with an external input TAZ.csv gd.TAZ2zone() "Step 3: Get Production/Attraction Rates of Each Land Use Type with a Specific Trip Purpose" gd.GetPoiTripRate(trip_purpose=1) # users can customize trip purpose and poi_trip_rate.csv "Step 4: Define Production/Attraction Value of Each Node According to POI Type" gd.GetNodeDemand(residential_production=20, residential_attraction=20, boundary_production=1000, boundary_attraction=1000) # users can customize production and attraction values of residential nodes and boundary nodes "Step 5: Calculate Zone-to-zone Accessibility Matrix by Centroid-to-centroid Straight Distance" gd.ProduceAccessMatrix() "Step 6: Apply Gravity Model to Perform Trip Distribution" gd.RunGravityModel(trip_purpose=1, a=None, b=None, c=None) # users can customize friction factor coefficients under a specific trip purpose "Step 7: Generate Agent" gd.GenerateAgentBasedDemand() ``` ## Visualization Option 1: Open [QGIS](https://www.qgis.org/) and add Delimited Text Layer of the files. Option 2: Upload files to the website of [ASU Trans+AI Lab](https://asu-trans-ai-lab.github.io/index.html#/) and view input and output files. Option 3: Import input_agent.csv to [A/B Street](https://a-b-street.github.io/docs/howto/asu.html) and view dynamic simulation of the demand. ## User guide Users can check the [user guide](https://github.com/asu-trans-ai-lab/grid2demand/blob/main/README.md) for a detailed introduction of grid2demand. %package help Summary: Development documents and examples for grid2demand Provides: python3-grid2demand-doc %description help # GRID2DEMAND: A tool for generating zone-to-zone travel demand based on grid cells ## Introduction Grid2demand is an open-source quick demand generation tool based on the trip generation and trip distribution methods of the standard 4-step travel model for teaching transportation planning and applications. By taking advantage of OSM2GMNS tool to obtain routable transportation network from OpenStreetMap, Grid2demand aims to further utilize Point of Interest (POI) data to construct trip demand matrix aligned with standard travel models. You can get access to the introduction video with the link: https://www.youtube.com/watch?v=EfjCERQQGTs&t=1021s ## Quick Start Users can refer to the [code template and test data set](https://github.com/asu-trans-ai-lab/Grid2Demand/) to have a quick start. ## Installation ``` pip install grid2demand ``` If you meet installation issues, please refer to the [user guide](https://github.com/asu-trans-ai-lab/grid2demand/blob/main/README.md) for solutions. ## Simple Example ```python import grid2demand as gd "Step 1: Read Input Network Data" gd.ReadNetworkFiles() "Step 2: Zone Partition" # Option 1: Partition grid into cells (users can customize number of grid cells or cell's width and height in meters) gd.PartitionGrid(number_of_x_blocks=None, number_of_y_blocks=None, cell_width=1000, cell_height=1000) # Option 2: Partition based on Traffic Analysis Zone boundaries with an external input TAZ.csv gd.TAZ2zone() "Step 3: Get Production/Attraction Rates of Each Land Use Type with a Specific Trip Purpose" gd.GetPoiTripRate(trip_purpose=1) # users can customize trip purpose and poi_trip_rate.csv "Step 4: Define Production/Attraction Value of Each Node According to POI Type" gd.GetNodeDemand(residential_production=20, residential_attraction=20, boundary_production=1000, boundary_attraction=1000) # users can customize production and attraction values of residential nodes and boundary nodes "Step 5: Calculate Zone-to-zone Accessibility Matrix by Centroid-to-centroid Straight Distance" gd.ProduceAccessMatrix() "Step 6: Apply Gravity Model to Perform Trip Distribution" gd.RunGravityModel(trip_purpose=1, a=None, b=None, c=None) # users can customize friction factor coefficients under a specific trip purpose "Step 7: Generate Agent" gd.GenerateAgentBasedDemand() ``` ## Visualization Option 1: Open [QGIS](https://www.qgis.org/) and add Delimited Text Layer of the files. Option 2: Upload files to the website of [ASU Trans+AI Lab](https://asu-trans-ai-lab.github.io/index.html#/) and view input and output files. Option 3: Import input_agent.csv to [A/B Street](https://a-b-street.github.io/docs/howto/asu.html) and view dynamic simulation of the demand. ## User guide Users can check the [user guide](https://github.com/asu-trans-ai-lab/grid2demand/blob/main/README.md) for a detailed introduction of grid2demand. %prep %autosetup -n grid2demand-0.2.7 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-grid2demand -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 0.2.7-1 - Package Spec generated