%global _empty_manifest_terminate_build 0 Name: python-cma Version: 3.3.0 Release: 1 Summary: CMA-ES, Covariance Matrix Adaptation Evolution Strategy for non-linear numerical optimization in Python License: BSD URL: https://github.com/CMA-ES/pycma Source0: https://mirrors.nju.edu.cn/pypi/web/packages/46/b8/dc832cf0881641355c5121b390942de858079de08720bc2a6030c6c85153/cma-3.3.0.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-moarchiving Requires: python3-matplotlib %description A stochastic numerical optimization algorithm for difficult (non-convex, ill-conditioned, multi-modal, rugged, noisy) optimization problems in continuous search spaces, implemented in Python. Typical domain of application are bound-constrained or unconstrained objective functions with: * search space dimension between, say, 5 and (a few) 100, * no gradients available, * at least, say, 100 times dimension function evaluations needed to get satisfactory solutions, * non-separable, ill-conditioned, or rugged/multi-modal landscapes. The CMA-ES is quite reliable, however for small budgets (fewer function evaluations than, say, 100 times dimension) or in very small dimensions better (i.e. faster) methods are available. The ``pycma`` module provides two independent implementations of the CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and ``cma.purecma.CMAES``. %package -n python3-cma Summary: CMA-ES, Covariance Matrix Adaptation Evolution Strategy for non-linear numerical optimization in Python Provides: python-cma BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-cma A stochastic numerical optimization algorithm for difficult (non-convex, ill-conditioned, multi-modal, rugged, noisy) optimization problems in continuous search spaces, implemented in Python. Typical domain of application are bound-constrained or unconstrained objective functions with: * search space dimension between, say, 5 and (a few) 100, * no gradients available, * at least, say, 100 times dimension function evaluations needed to get satisfactory solutions, * non-separable, ill-conditioned, or rugged/multi-modal landscapes. The CMA-ES is quite reliable, however for small budgets (fewer function evaluations than, say, 100 times dimension) or in very small dimensions better (i.e. faster) methods are available. The ``pycma`` module provides two independent implementations of the CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and ``cma.purecma.CMAES``. %package help Summary: Development documents and examples for cma Provides: python3-cma-doc %description help A stochastic numerical optimization algorithm for difficult (non-convex, ill-conditioned, multi-modal, rugged, noisy) optimization problems in continuous search spaces, implemented in Python. Typical domain of application are bound-constrained or unconstrained objective functions with: * search space dimension between, say, 5 and (a few) 100, * no gradients available, * at least, say, 100 times dimension function evaluations needed to get satisfactory solutions, * non-separable, ill-conditioned, or rugged/multi-modal landscapes. The CMA-ES is quite reliable, however for small budgets (fewer function evaluations than, say, 100 times dimension) or in very small dimensions better (i.e. faster) methods are available. The ``pycma`` module provides two independent implementations of the CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and ``cma.purecma.CMAES``. %prep %autosetup -n cma-3.3.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-cma -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Apr 07 2023 Python_Bot - 3.3.0-1 - Package Spec generated