%global _empty_manifest_terminate_build 0 Name: python-yappi Version: 1.4.0 Release: 1 Summary: Yet Another Python Profiler License: MIT URL: https://github.com/sumerc/yappi Source0: https://mirrors.nju.edu.cn/pypi/web/packages/88/4a/e16c320be27ea5ed9015ebe4a5fe834e714a0f0fc9cf46a20b2f87bf4fe3/yappi-1.4.0.tar.gz Requires: python3-gevent %description

yappi

Yappi

A tracing profiler that is multithreading, asyncio and gevent aware.

## Highlights - **Fast**: Yappi is fast. It is completely written in C and lots of love and care went into making it fast. - **Unique**: Yappi supports multithreaded, [asyncio](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md) and [gevent](https://github.com/sumerc/yappi/blob/master/doc/greenlet-profiling.md) profiling. Tagging/filtering multiple profiler results has interesting [use cases](https://github.com/sumerc/yappi/blob/master/doc/api.md#set_tag_callback). - **Intuitive**: Profiler can be started/stopped and results can be obtained from any time and any thread. - **Standards Compliant**: Profiler results can be saved in [callgrind](http://valgrind.org/docs/manual/cl-format.html) or [pstat](http://docs.python.org/3.4/library/profile.html#pstats.Stats) formats. - **Rich in Feature set**: Profiler results can show either [Wall Time](https://en.wikipedia.org/wiki/Elapsed_real_time) or actual [CPU Time](http://en.wikipedia.org/wiki/CPU_time) and can be aggregated from different sessions. Various flags are defined for filtering and sorting profiler results. - **Robust**: Yappi has been around for years. ## Motivation CPython standard distribution comes with three deterministic profilers. `cProfile`, `Profile` and `hotshot`. `cProfile` is implemented as a C module based on `lsprof`, `Profile` is in pure Python and `hotshot` can be seen as a small subset of a cProfile. The major issue is that all of these profilers lack support for multi-threaded programs and CPU time. If you want to profile a multi-threaded application, you must give an entry point to these profilers and then maybe merge the outputs. None of these profilers are designed to work on long-running multi-threaded applications. It is also not possible to profile an application that start/stop/retrieve traces on the fly with these profilers. Now fast forwarding to 2019: With the latest improvements on `asyncio` library and asynchronous frameworks, most of the current profilers lacks the ability to show correct wall/cpu time or even call count information per-coroutine. Thus we need a different kind of approach to profile asynchronous code. Yappi, with v1.2 introduces the concept of `coroutine profiling`. With `coroutine-profiling`, you should be able to profile correct wall/cpu time and call count of your coroutine. (including the time spent in context switches, too). You can see details [here](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md). ## Installation Can be installed via PyPI ``` $ pip install yappi ``` OR from the source directly. ``` $ pip install git+https://github.com/sumerc/yappi#egg=yappi ``` ## Examples ### A simple example: ```python import yappi def a(): for _ in range(10000000): # do something CPU heavy pass yappi.set_clock_type("cpu") # Use set_clock_type("wall") for wall time yappi.start() a() yappi.get_func_stats().print_all() yappi.get_thread_stats().print_all() ''' Clock type: CPU Ordered by: totaltime, desc name ncall tsub ttot tavg doc.py:5 a 1 0.117907 0.117907 0.117907 name id tid ttot scnt _MainThread 0 139867147315008 0.118297 1 ''' ``` ### Profile a multithreaded application: You can profile a multithreaded application via Yappi and can easily retrieve per-thread profile information by filtering on `ctx_id` with `get_func_stats` API. ```python import yappi import time import threading _NTHREAD = 3 def _work(n): time.sleep(n * 0.1) yappi.start() threads = [] # generate _NTHREAD threads for i in range(_NTHREAD): t = threading.Thread(target=_work, args=(i + 1, )) t.start() threads.append(t) # wait all threads to finish for t in threads: t.join() yappi.stop() # retrieve thread stats by their thread id (given by yappi) threads = yappi.get_thread_stats() for thread in threads: print( "Function stats for (%s) (%d)" % (thread.name, thread.id) ) # it is the Thread.__class__.__name__ yappi.get_func_stats(ctx_id=thread.id).print_all() ''' Function stats for (Thread) (3) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000062 0.000062 doc3.py:8 _work 1 0.000012 0.000045 0.000045 Function stats for (Thread) (2) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000065 0.000065 doc3.py:8 _work 1 0.000010 0.000048 0.000048 Function stats for (Thread) (1) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000010 0.000043 0.000043 doc3.py:8 _work 1 0.000006 0.000033 0.000033 ''' ``` ### Different ways to filter/sort stats: You can use `filter_callback` on `get_func_stats` API to filter on functions, modules or whatever available in `YFuncStat` object. ```python import package_a import yappi import sys def a(): pass def b(): pass yappi.start() a() b() package_a.a() yappi.stop() # filter by module object current_module = sys.modules[__name__] stats = yappi.get_func_stats( filter_callback=lambda x: yappi.module_matches(x, [current_module]) ) # x is a yappi.YFuncStat object stats.sort("name", "desc").print_all() ''' Clock type: CPU Ordered by: name, desc name ncall tsub ttot tavg doc2.py:10 b 1 0.000001 0.000001 0.000001 doc2.py:6 a 1 0.000001 0.000001 0.000001 ''' # filter by function object stats = yappi.get_func_stats( filter_callback=lambda x: yappi.func_matches(x, [a, b]) ).print_all() ''' name ncall tsub ttot tavg doc2.py:6 a 1 0.000001 0.000001 0.000001 doc2.py:10 b 1 0.000001 0.000001 0.000001 ''' # filter by module name stats = yappi.get_func_stats(filter_callback=lambda x: 'package_a' in x.module ).print_all() ''' name ncall tsub ttot tavg package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001 ''' # filter by function name stats = yappi.get_func_stats(filter_callback=lambda x: 'a' in x.name ).print_all() ''' name ncall tsub ttot tavg doc2.py:6 a 1 0.000001 0.000001 0.000001 package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001 ''' ``` ### Profile an asyncio application: You can see that coroutine wall-time's are correctly profiled. ```python import asyncio import yappi async def foo(): await asyncio.sleep(1.0) await baz() await asyncio.sleep(0.5) async def bar(): await asyncio.sleep(2.0) async def baz(): await asyncio.sleep(1.0) yappi.set_clock_type("WALL") with yappi.run(): asyncio.run(foo()) asyncio.run(bar()) yappi.get_func_stats().print_all() ''' Clock type: WALL Ordered by: totaltime, desc name ncall tsub ttot tavg doc4.py:5 foo 1 0.000030 2.503808 2.503808 doc4.py:11 bar 1 0.000012 2.002492 2.002492 doc4.py:15 baz 1 0.000013 1.001397 1.001397 ''' ``` ### Profile a gevent application: You can use yappi to profile greenlet applications now! ```python import yappi from greenlet import greenlet import time class GreenletA(greenlet): def run(self): time.sleep(1) yappi.set_context_backend("greenlet") yappi.set_clock_type("wall") yappi.start(builtins=True) a = GreenletA() a.switch() yappi.stop() yappi.get_func_stats().print_all() ''' name ncall tsub ttot tavg tests/test_random.py:6 GreenletA.run 1 0.000007 1.000494 1.000494 time.sleep 1 1.000487 1.000487 1.000487 ''' ``` ## Documentation - [Introduction](https://github.com/sumerc/yappi/blob/master/doc/introduction.md) - [Clock Types](https://github.com/sumerc/yappi/blob/master/doc/clock_types.md) - [API](https://github.com/sumerc/yappi/blob/master/doc/api.md) - [Coroutine Profiling](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md) _(new in 1.2)_ - [Greenlet Profiling](https://github.com/sumerc/yappi/blob/master/doc/greenlet-profiling.md) _(new in 1.3)_ Note: Yes. I know I should be moving docs to readthedocs.io. Stay tuned! ## Related Talks Special thanks to A.Jesse Jiryu Davis: - [Python Performance Profiling: The Guts And The Glory (PyCon 2015)](https://www.youtube.com/watch?v=4uJWWXYHxaM) ## PyCharm Integration Yappi is the default profiler in `PyCharm`. If you have Yappi installed, `PyCharm` will use it. See [the official](https://www.jetbrains.com/help/pycharm/profiler.html) documentation for more details. %package -n python3-yappi Summary: Yet Another Python Profiler Provides: python-yappi BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip BuildRequires: python3-cffi BuildRequires: gcc BuildRequires: gdb %description -n python3-yappi

yappi

Yappi

A tracing profiler that is multithreading, asyncio and gevent aware.

## Highlights - **Fast**: Yappi is fast. It is completely written in C and lots of love and care went into making it fast. - **Unique**: Yappi supports multithreaded, [asyncio](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md) and [gevent](https://github.com/sumerc/yappi/blob/master/doc/greenlet-profiling.md) profiling. Tagging/filtering multiple profiler results has interesting [use cases](https://github.com/sumerc/yappi/blob/master/doc/api.md#set_tag_callback). - **Intuitive**: Profiler can be started/stopped and results can be obtained from any time and any thread. - **Standards Compliant**: Profiler results can be saved in [callgrind](http://valgrind.org/docs/manual/cl-format.html) or [pstat](http://docs.python.org/3.4/library/profile.html#pstats.Stats) formats. - **Rich in Feature set**: Profiler results can show either [Wall Time](https://en.wikipedia.org/wiki/Elapsed_real_time) or actual [CPU Time](http://en.wikipedia.org/wiki/CPU_time) and can be aggregated from different sessions. Various flags are defined for filtering and sorting profiler results. - **Robust**: Yappi has been around for years. ## Motivation CPython standard distribution comes with three deterministic profilers. `cProfile`, `Profile` and `hotshot`. `cProfile` is implemented as a C module based on `lsprof`, `Profile` is in pure Python and `hotshot` can be seen as a small subset of a cProfile. The major issue is that all of these profilers lack support for multi-threaded programs and CPU time. If you want to profile a multi-threaded application, you must give an entry point to these profilers and then maybe merge the outputs. None of these profilers are designed to work on long-running multi-threaded applications. It is also not possible to profile an application that start/stop/retrieve traces on the fly with these profilers. Now fast forwarding to 2019: With the latest improvements on `asyncio` library and asynchronous frameworks, most of the current profilers lacks the ability to show correct wall/cpu time or even call count information per-coroutine. Thus we need a different kind of approach to profile asynchronous code. Yappi, with v1.2 introduces the concept of `coroutine profiling`. With `coroutine-profiling`, you should be able to profile correct wall/cpu time and call count of your coroutine. (including the time spent in context switches, too). You can see details [here](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md). ## Installation Can be installed via PyPI ``` $ pip install yappi ``` OR from the source directly. ``` $ pip install git+https://github.com/sumerc/yappi#egg=yappi ``` ## Examples ### A simple example: ```python import yappi def a(): for _ in range(10000000): # do something CPU heavy pass yappi.set_clock_type("cpu") # Use set_clock_type("wall") for wall time yappi.start() a() yappi.get_func_stats().print_all() yappi.get_thread_stats().print_all() ''' Clock type: CPU Ordered by: totaltime, desc name ncall tsub ttot tavg doc.py:5 a 1 0.117907 0.117907 0.117907 name id tid ttot scnt _MainThread 0 139867147315008 0.118297 1 ''' ``` ### Profile a multithreaded application: You can profile a multithreaded application via Yappi and can easily retrieve per-thread profile information by filtering on `ctx_id` with `get_func_stats` API. ```python import yappi import time import threading _NTHREAD = 3 def _work(n): time.sleep(n * 0.1) yappi.start() threads = [] # generate _NTHREAD threads for i in range(_NTHREAD): t = threading.Thread(target=_work, args=(i + 1, )) t.start() threads.append(t) # wait all threads to finish for t in threads: t.join() yappi.stop() # retrieve thread stats by their thread id (given by yappi) threads = yappi.get_thread_stats() for thread in threads: print( "Function stats for (%s) (%d)" % (thread.name, thread.id) ) # it is the Thread.__class__.__name__ yappi.get_func_stats(ctx_id=thread.id).print_all() ''' Function stats for (Thread) (3) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000062 0.000062 doc3.py:8 _work 1 0.000012 0.000045 0.000045 Function stats for (Thread) (2) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000065 0.000065 doc3.py:8 _work 1 0.000010 0.000048 0.000048 Function stats for (Thread) (1) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000010 0.000043 0.000043 doc3.py:8 _work 1 0.000006 0.000033 0.000033 ''' ``` ### Different ways to filter/sort stats: You can use `filter_callback` on `get_func_stats` API to filter on functions, modules or whatever available in `YFuncStat` object. ```python import package_a import yappi import sys def a(): pass def b(): pass yappi.start() a() b() package_a.a() yappi.stop() # filter by module object current_module = sys.modules[__name__] stats = yappi.get_func_stats( filter_callback=lambda x: yappi.module_matches(x, [current_module]) ) # x is a yappi.YFuncStat object stats.sort("name", "desc").print_all() ''' Clock type: CPU Ordered by: name, desc name ncall tsub ttot tavg doc2.py:10 b 1 0.000001 0.000001 0.000001 doc2.py:6 a 1 0.000001 0.000001 0.000001 ''' # filter by function object stats = yappi.get_func_stats( filter_callback=lambda x: yappi.func_matches(x, [a, b]) ).print_all() ''' name ncall tsub ttot tavg doc2.py:6 a 1 0.000001 0.000001 0.000001 doc2.py:10 b 1 0.000001 0.000001 0.000001 ''' # filter by module name stats = yappi.get_func_stats(filter_callback=lambda x: 'package_a' in x.module ).print_all() ''' name ncall tsub ttot tavg package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001 ''' # filter by function name stats = yappi.get_func_stats(filter_callback=lambda x: 'a' in x.name ).print_all() ''' name ncall tsub ttot tavg doc2.py:6 a 1 0.000001 0.000001 0.000001 package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001 ''' ``` ### Profile an asyncio application: You can see that coroutine wall-time's are correctly profiled. ```python import asyncio import yappi async def foo(): await asyncio.sleep(1.0) await baz() await asyncio.sleep(0.5) async def bar(): await asyncio.sleep(2.0) async def baz(): await asyncio.sleep(1.0) yappi.set_clock_type("WALL") with yappi.run(): asyncio.run(foo()) asyncio.run(bar()) yappi.get_func_stats().print_all() ''' Clock type: WALL Ordered by: totaltime, desc name ncall tsub ttot tavg doc4.py:5 foo 1 0.000030 2.503808 2.503808 doc4.py:11 bar 1 0.000012 2.002492 2.002492 doc4.py:15 baz 1 0.000013 1.001397 1.001397 ''' ``` ### Profile a gevent application: You can use yappi to profile greenlet applications now! ```python import yappi from greenlet import greenlet import time class GreenletA(greenlet): def run(self): time.sleep(1) yappi.set_context_backend("greenlet") yappi.set_clock_type("wall") yappi.start(builtins=True) a = GreenletA() a.switch() yappi.stop() yappi.get_func_stats().print_all() ''' name ncall tsub ttot tavg tests/test_random.py:6 GreenletA.run 1 0.000007 1.000494 1.000494 time.sleep 1 1.000487 1.000487 1.000487 ''' ``` ## Documentation - [Introduction](https://github.com/sumerc/yappi/blob/master/doc/introduction.md) - [Clock Types](https://github.com/sumerc/yappi/blob/master/doc/clock_types.md) - [API](https://github.com/sumerc/yappi/blob/master/doc/api.md) - [Coroutine Profiling](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md) _(new in 1.2)_ - [Greenlet Profiling](https://github.com/sumerc/yappi/blob/master/doc/greenlet-profiling.md) _(new in 1.3)_ Note: Yes. I know I should be moving docs to readthedocs.io. Stay tuned! ## Related Talks Special thanks to A.Jesse Jiryu Davis: - [Python Performance Profiling: The Guts And The Glory (PyCon 2015)](https://www.youtube.com/watch?v=4uJWWXYHxaM) ## PyCharm Integration Yappi is the default profiler in `PyCharm`. If you have Yappi installed, `PyCharm` will use it. See [the official](https://www.jetbrains.com/help/pycharm/profiler.html) documentation for more details. %package help Summary: Development documents and examples for yappi Provides: python3-yappi-doc %description help

yappi

Yappi

A tracing profiler that is multithreading, asyncio and gevent aware.

## Highlights - **Fast**: Yappi is fast. It is completely written in C and lots of love and care went into making it fast. - **Unique**: Yappi supports multithreaded, [asyncio](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md) and [gevent](https://github.com/sumerc/yappi/blob/master/doc/greenlet-profiling.md) profiling. Tagging/filtering multiple profiler results has interesting [use cases](https://github.com/sumerc/yappi/blob/master/doc/api.md#set_tag_callback). - **Intuitive**: Profiler can be started/stopped and results can be obtained from any time and any thread. - **Standards Compliant**: Profiler results can be saved in [callgrind](http://valgrind.org/docs/manual/cl-format.html) or [pstat](http://docs.python.org/3.4/library/profile.html#pstats.Stats) formats. - **Rich in Feature set**: Profiler results can show either [Wall Time](https://en.wikipedia.org/wiki/Elapsed_real_time) or actual [CPU Time](http://en.wikipedia.org/wiki/CPU_time) and can be aggregated from different sessions. Various flags are defined for filtering and sorting profiler results. - **Robust**: Yappi has been around for years. ## Motivation CPython standard distribution comes with three deterministic profilers. `cProfile`, `Profile` and `hotshot`. `cProfile` is implemented as a C module based on `lsprof`, `Profile` is in pure Python and `hotshot` can be seen as a small subset of a cProfile. The major issue is that all of these profilers lack support for multi-threaded programs and CPU time. If you want to profile a multi-threaded application, you must give an entry point to these profilers and then maybe merge the outputs. None of these profilers are designed to work on long-running multi-threaded applications. It is also not possible to profile an application that start/stop/retrieve traces on the fly with these profilers. Now fast forwarding to 2019: With the latest improvements on `asyncio` library and asynchronous frameworks, most of the current profilers lacks the ability to show correct wall/cpu time or even call count information per-coroutine. Thus we need a different kind of approach to profile asynchronous code. Yappi, with v1.2 introduces the concept of `coroutine profiling`. With `coroutine-profiling`, you should be able to profile correct wall/cpu time and call count of your coroutine. (including the time spent in context switches, too). You can see details [here](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md). ## Installation Can be installed via PyPI ``` $ pip install yappi ``` OR from the source directly. ``` $ pip install git+https://github.com/sumerc/yappi#egg=yappi ``` ## Examples ### A simple example: ```python import yappi def a(): for _ in range(10000000): # do something CPU heavy pass yappi.set_clock_type("cpu") # Use set_clock_type("wall") for wall time yappi.start() a() yappi.get_func_stats().print_all() yappi.get_thread_stats().print_all() ''' Clock type: CPU Ordered by: totaltime, desc name ncall tsub ttot tavg doc.py:5 a 1 0.117907 0.117907 0.117907 name id tid ttot scnt _MainThread 0 139867147315008 0.118297 1 ''' ``` ### Profile a multithreaded application: You can profile a multithreaded application via Yappi and can easily retrieve per-thread profile information by filtering on `ctx_id` with `get_func_stats` API. ```python import yappi import time import threading _NTHREAD = 3 def _work(n): time.sleep(n * 0.1) yappi.start() threads = [] # generate _NTHREAD threads for i in range(_NTHREAD): t = threading.Thread(target=_work, args=(i + 1, )) t.start() threads.append(t) # wait all threads to finish for t in threads: t.join() yappi.stop() # retrieve thread stats by their thread id (given by yappi) threads = yappi.get_thread_stats() for thread in threads: print( "Function stats for (%s) (%d)" % (thread.name, thread.id) ) # it is the Thread.__class__.__name__ yappi.get_func_stats(ctx_id=thread.id).print_all() ''' Function stats for (Thread) (3) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000062 0.000062 doc3.py:8 _work 1 0.000012 0.000045 0.000045 Function stats for (Thread) (2) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000065 0.000065 doc3.py:8 _work 1 0.000010 0.000048 0.000048 Function stats for (Thread) (1) name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000010 0.000043 0.000043 doc3.py:8 _work 1 0.000006 0.000033 0.000033 ''' ``` ### Different ways to filter/sort stats: You can use `filter_callback` on `get_func_stats` API to filter on functions, modules or whatever available in `YFuncStat` object. ```python import package_a import yappi import sys def a(): pass def b(): pass yappi.start() a() b() package_a.a() yappi.stop() # filter by module object current_module = sys.modules[__name__] stats = yappi.get_func_stats( filter_callback=lambda x: yappi.module_matches(x, [current_module]) ) # x is a yappi.YFuncStat object stats.sort("name", "desc").print_all() ''' Clock type: CPU Ordered by: name, desc name ncall tsub ttot tavg doc2.py:10 b 1 0.000001 0.000001 0.000001 doc2.py:6 a 1 0.000001 0.000001 0.000001 ''' # filter by function object stats = yappi.get_func_stats( filter_callback=lambda x: yappi.func_matches(x, [a, b]) ).print_all() ''' name ncall tsub ttot tavg doc2.py:6 a 1 0.000001 0.000001 0.000001 doc2.py:10 b 1 0.000001 0.000001 0.000001 ''' # filter by module name stats = yappi.get_func_stats(filter_callback=lambda x: 'package_a' in x.module ).print_all() ''' name ncall tsub ttot tavg package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001 ''' # filter by function name stats = yappi.get_func_stats(filter_callback=lambda x: 'a' in x.name ).print_all() ''' name ncall tsub ttot tavg doc2.py:6 a 1 0.000001 0.000001 0.000001 package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001 ''' ``` ### Profile an asyncio application: You can see that coroutine wall-time's are correctly profiled. ```python import asyncio import yappi async def foo(): await asyncio.sleep(1.0) await baz() await asyncio.sleep(0.5) async def bar(): await asyncio.sleep(2.0) async def baz(): await asyncio.sleep(1.0) yappi.set_clock_type("WALL") with yappi.run(): asyncio.run(foo()) asyncio.run(bar()) yappi.get_func_stats().print_all() ''' Clock type: WALL Ordered by: totaltime, desc name ncall tsub ttot tavg doc4.py:5 foo 1 0.000030 2.503808 2.503808 doc4.py:11 bar 1 0.000012 2.002492 2.002492 doc4.py:15 baz 1 0.000013 1.001397 1.001397 ''' ``` ### Profile a gevent application: You can use yappi to profile greenlet applications now! ```python import yappi from greenlet import greenlet import time class GreenletA(greenlet): def run(self): time.sleep(1) yappi.set_context_backend("greenlet") yappi.set_clock_type("wall") yappi.start(builtins=True) a = GreenletA() a.switch() yappi.stop() yappi.get_func_stats().print_all() ''' name ncall tsub ttot tavg tests/test_random.py:6 GreenletA.run 1 0.000007 1.000494 1.000494 time.sleep 1 1.000487 1.000487 1.000487 ''' ``` ## Documentation - [Introduction](https://github.com/sumerc/yappi/blob/master/doc/introduction.md) - [Clock Types](https://github.com/sumerc/yappi/blob/master/doc/clock_types.md) - [API](https://github.com/sumerc/yappi/blob/master/doc/api.md) - [Coroutine Profiling](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md) _(new in 1.2)_ - [Greenlet Profiling](https://github.com/sumerc/yappi/blob/master/doc/greenlet-profiling.md) _(new in 1.3)_ Note: Yes. I know I should be moving docs to readthedocs.io. Stay tuned! ## Related Talks Special thanks to A.Jesse Jiryu Davis: - [Python Performance Profiling: The Guts And The Glory (PyCon 2015)](https://www.youtube.com/watch?v=4uJWWXYHxaM) ## PyCharm Integration Yappi is the default profiler in `PyCharm`. If you have Yappi installed, `PyCharm` will use it. See [the official](https://www.jetbrains.com/help/pycharm/profiler.html) documentation for more details. %prep %autosetup -n yappi-1.4.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-yappi -f filelist.lst %dir %{python3_sitearch}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 1.4.0-1 - Package Spec generated