%global _empty_manifest_terminate_build 0 Name: python-category-encoders Version: 2.6.0 Release: 1 Summary: A collection of sklearn transformers to encode categorical variables as numeric License: BSD URL: https://github.com/scikit-learn-contrib/category_encoders Source0: https://mirrors.nju.edu.cn/pypi/web/packages/06/e4/1a8dabdeb9ef909a1fc7bd69a0c1c88bf300ec025339fb8323d5f0c696cf/category_encoders-2.6.0.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scikit-learn Requires: python3-scipy Requires: python3-statsmodels Requires: python3-pandas Requires: python3-patsy %description [![Downloads](https://pepy.tech/badge/category-encoders)](https://pepy.tech/project/category-encoders) [![Downloads](https://pepy.tech/badge/category-encoders/month)](https://pepy.tech/project/category-encoders) ![Test Suite and Linting](https://github.com/scikit-learn-contrib/category_encoders/workflows/Test%20Suite%20and%20Linting/badge.svg) [![DOI](https://zenodo.org/badge/47077067.svg)](https://zenodo.org/badge/latestdoi/47077067) A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques. %package -n python3-category-encoders Summary: A collection of sklearn transformers to encode categorical variables as numeric Provides: python-category-encoders BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-category-encoders [![Downloads](https://pepy.tech/badge/category-encoders)](https://pepy.tech/project/category-encoders) [![Downloads](https://pepy.tech/badge/category-encoders/month)](https://pepy.tech/project/category-encoders) ![Test Suite and Linting](https://github.com/scikit-learn-contrib/category_encoders/workflows/Test%20Suite%20and%20Linting/badge.svg) [![DOI](https://zenodo.org/badge/47077067.svg)](https://zenodo.org/badge/latestdoi/47077067) A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques. %package help Summary: Development documents and examples for category-encoders Provides: python3-category-encoders-doc %description help [![Downloads](https://pepy.tech/badge/category-encoders)](https://pepy.tech/project/category-encoders) [![Downloads](https://pepy.tech/badge/category-encoders/month)](https://pepy.tech/project/category-encoders) ![Test Suite and Linting](https://github.com/scikit-learn-contrib/category_encoders/workflows/Test%20Suite%20and%20Linting/badge.svg) [![DOI](https://zenodo.org/badge/47077067.svg)](https://zenodo.org/badge/latestdoi/47077067) A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques. %prep %autosetup -n category-encoders-2.6.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-category-encoders -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 2.6.0-1 - Package Spec generated