%global _empty_manifest_terminate_build 0 Name: python-wandb Version: 0.14.2 Release: 1 Summary: A CLI and library for interacting with the Weights and Biases API. License: MIT license URL: https://github.com/wandb/wandb Source0: https://mirrors.nju.edu.cn/pypi/web/packages/27/8c/450c329e607e7b09413e27a5953adbe0ee61071fb54370fa3e4424fec9ed/wandb-0.14.2.tar.gz BuildArch: noarch Requires: python3-Click Requires: python3-GitPython Requires: python3-requests Requires: python3-psutil Requires: python3-sentry-sdk Requires: python3-docker-pycreds Requires: python3-PyYAML Requires: python3-pathtools Requires: python3-setproctitle Requires: python3-setuptools Requires: python3-appdirs Requires: python3-typing-extensions Requires: python3-dataclasses Requires: python3-protobuf Requires: python3-protobuf Requires: python3-protobuf Requires: python3-protobuf Requires: python3-httpx Requires: python3-boto3 Requires: python3-azure-storage-blob Requires: python3-google-cloud-storage Requires: python3-grpcio Requires: python3-kubernetes Requires: python3-minio Requires: python3-google-cloud-storage Requires: python3-sh Requires: python3-awscli Requires: python3-nbconvert Requires: python3-nbformat Requires: python3-chardet Requires: python3-iso8601 Requires: python3-typing-extensions Requires: python3-boto3 Requires: python3-botocore Requires: python3-google-auth Requires: python3-google-cloud-compute Requires: python3-google-cloud-storage Requires: python3-google-cloud-artifact-registry Requires: python3-kubernetes Requires: python3-numpy Requires: python3-moviepy Requires: python3-pillow Requires: python3-bokeh Requires: python3-soundfile Requires: python3-plotly Requires: python3-rdkit-pypi Requires: python3-cloudpickle Requires: python3-sweeps %description


# Weights and Biases [![PyPI](https://img.shields.io/pypi/v/wandb)](https://pypi.python.org/pypi/wandb) [![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/wandb)](https://anaconda.org/conda-forge/wandb) [![CircleCI](https://img.shields.io/circleci/build/github/wandb/wandb/main)](https://circleci.com/gh/wandb/wandb) [![Codecov](https://img.shields.io/codecov/c/gh/wandb/wandb)](https://codecov.io/gh/wandb/wandb) Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. - Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. - Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. - Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. - Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights. [Sign up for a free account →](https://wandb.ai/login?signup=true) ## Features - Store hyper-parameters used in a training run - Search, compare, and visualize training runs - Analyze system usage metrics alongside runs - Collaborate with team members - Replicate historic results - Run parameter sweeps - Keep records of experiments available forever [Documentation →](https://docs.wandb.com) ## Quickstart ```shell pip install wandb ``` In your training script: ```python import wandb # Your custom arguments defined here args = ... wandb.init(config=args, project="my-project") wandb.config["more"] = "custom" def training_loop(): while True: # Do some machine learning epoch, loss, val_loss = ... # Framework agnostic / custom metrics wandb.log({"epoch": epoch, "loss": loss, "val_loss": val_loss}) ``` If you're already using Tensorboard or [TensorboardX](https://github.com/lanpa/tensorboardX), you can integrate with one line: ```python wandb.init(sync_tensorboard=True) ``` ## Running your script Run `wandb login` from your terminal to signup or authenticate your machine (we store your api key in ~/.netrc). You can also set the `WANDB_API_KEY` environment variable with a key from your [settings](https://app.wandb.ai/settings). Run your script with `python my_script.py` and all metadata will be synced to the cloud. You will see a url in your terminal logs when your script starts and finishes. Data is staged locally in a directory named _wandb_ relative to your script. If you want to test your script without syncing to the cloud you can set the environment variable `WANDB_MODE=dryrun`. If you are using [docker](https://docker.com) to run your code, we provide a wrapper command `wandb docker` that mounts your current directory, sets environment variables, and ensures the wandb library is installed. Training your models in docker gives you the ability to restore the exact code and environment with the `wandb restore` command. ## Web Interface [Sign up for a free account →](https://wandb.com) [![Watch the video](https://i.imgur.com/PW0Ejlc.png)](https://youtu.be/EeqhOSvNX-A) [Introduction video →](https://youtu.be/EeqhOSvNX-A) ## Detailed Usage Framework specific and detailed usage can be found in our [documentation](http://docs.wandb.com/). ## Testing To run basic test use `make test`. More detailed information can be found at CONTRIBUTING.md. We use [circleci](https://circleci.com) for CI. # Academic Researchers If you'd like a free academic account for your research group, [reach out to us →](https://www.wandb.com/academic) We make it easy to cite W&B in your published paper. [Learn more →](https://www.wandb.com/academic) [![](https://i.imgur.com/loKLiez.png)](https://www.wandb.com/academic) ## Community Got questions, feedback or want to join a community of ML engineers working on exciting projects? slack Join our [slack](https://bit.ly/wb-slack) community. [![Twitter](https://img.shields.io/twitter/follow/weights_biases?style=social)](https://twitter.com/weights_biases) Follow us on [Twitter](https://twitter.com/weights_biases). %package -n python3-wandb Summary: A CLI and library for interacting with the Weights and Biases API. Provides: python-wandb BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-wandb


# Weights and Biases [![PyPI](https://img.shields.io/pypi/v/wandb)](https://pypi.python.org/pypi/wandb) [![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/wandb)](https://anaconda.org/conda-forge/wandb) [![CircleCI](https://img.shields.io/circleci/build/github/wandb/wandb/main)](https://circleci.com/gh/wandb/wandb) [![Codecov](https://img.shields.io/codecov/c/gh/wandb/wandb)](https://codecov.io/gh/wandb/wandb) Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. - Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. - Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. - Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. - Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights. [Sign up for a free account →](https://wandb.ai/login?signup=true) ## Features - Store hyper-parameters used in a training run - Search, compare, and visualize training runs - Analyze system usage metrics alongside runs - Collaborate with team members - Replicate historic results - Run parameter sweeps - Keep records of experiments available forever [Documentation →](https://docs.wandb.com) ## Quickstart ```shell pip install wandb ``` In your training script: ```python import wandb # Your custom arguments defined here args = ... wandb.init(config=args, project="my-project") wandb.config["more"] = "custom" def training_loop(): while True: # Do some machine learning epoch, loss, val_loss = ... # Framework agnostic / custom metrics wandb.log({"epoch": epoch, "loss": loss, "val_loss": val_loss}) ``` If you're already using Tensorboard or [TensorboardX](https://github.com/lanpa/tensorboardX), you can integrate with one line: ```python wandb.init(sync_tensorboard=True) ``` ## Running your script Run `wandb login` from your terminal to signup or authenticate your machine (we store your api key in ~/.netrc). You can also set the `WANDB_API_KEY` environment variable with a key from your [settings](https://app.wandb.ai/settings). Run your script with `python my_script.py` and all metadata will be synced to the cloud. You will see a url in your terminal logs when your script starts and finishes. Data is staged locally in a directory named _wandb_ relative to your script. If you want to test your script without syncing to the cloud you can set the environment variable `WANDB_MODE=dryrun`. If you are using [docker](https://docker.com) to run your code, we provide a wrapper command `wandb docker` that mounts your current directory, sets environment variables, and ensures the wandb library is installed. Training your models in docker gives you the ability to restore the exact code and environment with the `wandb restore` command. ## Web Interface [Sign up for a free account →](https://wandb.com) [![Watch the video](https://i.imgur.com/PW0Ejlc.png)](https://youtu.be/EeqhOSvNX-A) [Introduction video →](https://youtu.be/EeqhOSvNX-A) ## Detailed Usage Framework specific and detailed usage can be found in our [documentation](http://docs.wandb.com/). ## Testing To run basic test use `make test`. More detailed information can be found at CONTRIBUTING.md. We use [circleci](https://circleci.com) for CI. # Academic Researchers If you'd like a free academic account for your research group, [reach out to us →](https://www.wandb.com/academic) We make it easy to cite W&B in your published paper. [Learn more →](https://www.wandb.com/academic) [![](https://i.imgur.com/loKLiez.png)](https://www.wandb.com/academic) ## Community Got questions, feedback or want to join a community of ML engineers working on exciting projects? slack Join our [slack](https://bit.ly/wb-slack) community. [![Twitter](https://img.shields.io/twitter/follow/weights_biases?style=social)](https://twitter.com/weights_biases) Follow us on [Twitter](https://twitter.com/weights_biases). %package help Summary: Development documents and examples for wandb Provides: python3-wandb-doc %description help


# Weights and Biases [![PyPI](https://img.shields.io/pypi/v/wandb)](https://pypi.python.org/pypi/wandb) [![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/wandb)](https://anaconda.org/conda-forge/wandb) [![CircleCI](https://img.shields.io/circleci/build/github/wandb/wandb/main)](https://circleci.com/gh/wandb/wandb) [![Codecov](https://img.shields.io/codecov/c/gh/wandb/wandb)](https://codecov.io/gh/wandb/wandb) Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. - Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. - Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. - Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. - Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights. [Sign up for a free account →](https://wandb.ai/login?signup=true) ## Features - Store hyper-parameters used in a training run - Search, compare, and visualize training runs - Analyze system usage metrics alongside runs - Collaborate with team members - Replicate historic results - Run parameter sweeps - Keep records of experiments available forever [Documentation →](https://docs.wandb.com) ## Quickstart ```shell pip install wandb ``` In your training script: ```python import wandb # Your custom arguments defined here args = ... wandb.init(config=args, project="my-project") wandb.config["more"] = "custom" def training_loop(): while True: # Do some machine learning epoch, loss, val_loss = ... # Framework agnostic / custom metrics wandb.log({"epoch": epoch, "loss": loss, "val_loss": val_loss}) ``` If you're already using Tensorboard or [TensorboardX](https://github.com/lanpa/tensorboardX), you can integrate with one line: ```python wandb.init(sync_tensorboard=True) ``` ## Running your script Run `wandb login` from your terminal to signup or authenticate your machine (we store your api key in ~/.netrc). You can also set the `WANDB_API_KEY` environment variable with a key from your [settings](https://app.wandb.ai/settings). Run your script with `python my_script.py` and all metadata will be synced to the cloud. You will see a url in your terminal logs when your script starts and finishes. Data is staged locally in a directory named _wandb_ relative to your script. If you want to test your script without syncing to the cloud you can set the environment variable `WANDB_MODE=dryrun`. If you are using [docker](https://docker.com) to run your code, we provide a wrapper command `wandb docker` that mounts your current directory, sets environment variables, and ensures the wandb library is installed. Training your models in docker gives you the ability to restore the exact code and environment with the `wandb restore` command. ## Web Interface [Sign up for a free account →](https://wandb.com) [![Watch the video](https://i.imgur.com/PW0Ejlc.png)](https://youtu.be/EeqhOSvNX-A) [Introduction video →](https://youtu.be/EeqhOSvNX-A) ## Detailed Usage Framework specific and detailed usage can be found in our [documentation](http://docs.wandb.com/). ## Testing To run basic test use `make test`. More detailed information can be found at CONTRIBUTING.md. We use [circleci](https://circleci.com) for CI. # Academic Researchers If you'd like a free academic account for your research group, [reach out to us →](https://www.wandb.com/academic) We make it easy to cite W&B in your published paper. [Learn more →](https://www.wandb.com/academic) [![](https://i.imgur.com/loKLiez.png)](https://www.wandb.com/academic) ## Community Got questions, feedback or want to join a community of ML engineers working on exciting projects? slack Join our [slack](https://bit.ly/wb-slack) community. [![Twitter](https://img.shields.io/twitter/follow/weights_biases?style=social)](https://twitter.com/weights_biases) Follow us on [Twitter](https://twitter.com/weights_biases). %prep %autosetup -n wandb-0.14.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-wandb -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 0.14.2-1 - Package Spec generated