%global _empty_manifest_terminate_build 0 Name: python-ssm-cache Version: 2.10 Release: 1 Summary: AWS System Manager Parameter Store caching client for Python License: MIT URL: https://github.com/alexcasalboni/ssm-cache-python Source0: https://mirrors.nju.edu.cn/pypi/web/packages/10/d0/6542b4658d2412580b92539ead409b7f9038b2d471e82e41cab132a712cd/ssm-cache-2.10.tar.gz BuildArch: noarch Requires: python3-boto3 Requires: python3-future %description [![Build Status](https://travis-ci.org/alexcasalboni/ssm-cache-python.svg?branch=master)](https://travis-ci.org/alexcasalboni/ssm-cache-python) [![Coverage Status](https://coveralls.io/repos/github/alexcasalboni/ssm-cache-python/badge.svg)](https://coveralls.io/github/alexcasalboni/ssm-cache-python) [![PyPI version](https://badge.fury.io/py/ssm-cache.svg)](https://badge.fury.io/py/ssm-cache) [![GitHub license](https://img.shields.io/github/license/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/blob/master/LICENSE) [![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/alexcasalboni/ssm-cache-python/graphs/commit-activity) [![GitHub issues](https://img.shields.io/github/issues/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/issues) [![Open Source Love svg2](https://badges.frapsoft.com/os/v2/open-source.svg?v=103)](https://github.com/ellerbrock/open-source-badges/) [![GitHub stars](https://img.shields.io/github/stars/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/stargazers) This module wraps the AWS Parameter Store and adds a caching and grouping layer with max-age invalidation. You can use this module with AWS Lambda to read and refresh parameters and secrets. Your IAM role will require `ssm:GetParameters` permissions (optionally, also `kms:Decrypt` if you use `SecureString` params). ## How to install Install the module with `pip`: ```bash pip install ssm-cache ``` ## How to use it ### Simplest use case A single parameter, configured by name. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') value = param.value ``` ### With cache invalidation You can configure the `max_age` in seconds, after which the values will be automatically refreshed. ```python from ssm_cache import SSMParameter param_1 = SSMParameter('param_1', max_age=300) # 5 min value_1 = param.value param_2 = SSMParameter('param_2', max_age=3600) # 1 hour value_2 = param_2.value ``` ### With multiple parameters You can configure more than one parameter to be fetched/cached/decrypted as a group. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup(max_age=300) param_1 = group.parameter('param_1') param_2 = group.parameter('param_2') value_1 = param_1.value value_2 = param_2.value ``` ### With hierarchical parameters You can fetch/cache a group of parameters under a given prefix. Optionally, the group itself could have its own base path. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup(base_path="/Foo") foo_bar = group.parameter('/Bar') # will fetch /Foo/Bar baz_params = group.parameters('/Baz') # will fetch /Foo/Baz/1 and /Foo/Baz/2 assert len(group) == 3 ``` Note: you can call `group.parameters(...)` multiple times. If caching is enabled, the group's cache will expire when the firstly fetched parameters expire. #### Hierarchical parameters and filters You can filter by parameter `Type` and KMS `KeyId`, either building the filter object manually or using a class-based approach (which provides some additional checks before invoking the API). ```python from ssm_cache import SSMParameterGroup from ssm_cache.filters import SSMFilterType group = SSMParameterGroup() # manual filter definition params = group.parameters( path="/Foo/Bar", filters=[{ 'Key': 'Type', 'Option': 'Equals', 'Values': ['StringList'] }], ) # class-based filter params = group.parameters( path="/Foo/Bar", filters=[SSMFilterType().value('StringList')], # will validate allowed value(s) ) ``` #### Hierarchical parameters and non-recursiveness You can disable recursion when fetching parameters via prefix. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() # will fetch /Foo/1, but not /Foo/Bar/1 params = group.parameters( path="/Foo", recursive=False, ) ``` ### With StringList parameters `StringList` parameters ([documentation here](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ssm-parameter.html#cfn-ssm-parameter-type)) are automatically converted to Python lists with no additional configuration. ```python from ssm_cache import SSMParameter # "my_twitter_api_keys" is a StringList parameter (four comma-separated values) twitter_params = SSMParameter('my_twitter_api_keys') key, secret, access_token, access_token_secret = twitter_params.value ``` ### Explicit refresh You can manually force a refresh on a parameter or parameter group. Note that if a parameter is part of a group, the refresh operation will involve the entire group. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') value = param.value param.refresh() new_value = param.value ``` ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() param_1 = group.parameter('param_1') param_2 = group.parameter('param_2') value_1 = param_1.value value_2 = param_2.value group.refresh() new_value_1 = param_1.value new_value_2 = param_2.value param_1.refresh() new_new_value_1 = param_1.value new_new_value_2 = param_2.value # one parameter refreshes the whole group ``` ### Without decryption Decryption is enabled by default, but you can explicitly disable it (works for `SSMParameter` and `SSMGroup`). ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name', with_decryption=False) value = param.value ``` ### AWS Secrets Manager Integration You can read [AWS Secrets Manager](https://aws.amazon.com/secrets-manager/) secrets transparently by using the `SecretsManagerParameter` class, which comes with the same interface of `SSMParameter` and performs some additional prefixing and validation. ```python from ssm_cache import SecretsManagerParameter secret = SecretsManagerParameter('my_secret_name') value = secret.value ``` Secrets can be added to a `SSMParameterGroup` as well, although no group prefix will be applied. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() param = group.parameter('my_param') secret = group.secret('my_secret') param_value = param.value secret_value = secret.value ``` ### Versioning support SSM Parameter Store supports version selectors ([documentation here](https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-versions.html)). By default, the latest version is fetched if you don't specify it. Here is how you can retrieve a specific parameter version: ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name:2') value = param.value ``` Please note that invoking `param.refresh()` will not fetch newer versions. This is the intended behavior, as version selection should be used only when you need a specific parameter version. If you don't specify any version, you can always read the current version of a parameter. In this case, invoking `param.refresh()` will invoke the new version. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') print(param.version) # will print an int ``` ## Usage with AWS Lambda Your [AWS Lambda](https://aws.amazon.com/lambda/) code will look similar to the following snippet. ```python from ssm_cache import SSMParameter, SecretsManagerParameter param = SSMParameter('my_param_name') secret = SecretsManagerParameter('my_secret_name') def lambda_handler(event, context): dbname = param.value password = secret.value return 'Hello from Lambda with dbname %s and password %s' % (dbname, password) ``` ## Complex invalidation based on "signals" You may want to explicitly refresh the parameter cache when you believe the cached value expired. In the example below, we refresh the parameter value when an `InvalidCredentials` exception is detected (see the [decorator utility](#decorator-utility) for a simpler version!). ```python from ssm_cache import SSMParameter from my_db_lib import Client, InvalidCredentials # pseudo-code param = SSMParameter('my_db_password') my_db_client = Client(password=param.value) def read_record(is_retry=False): try: return my_db_client.read_record() except InvalidCredentials: if not is_retry: # avoid infinite recursion param.refresh() # force parameter refresh my_db_client = Client(password=param.value) # re-configure db client return read_record(is_retry=True) # let's try again :) def lambda_handler(event, context): return { 'record': read_record(), } ``` ## Decorator utility The retry logic shown above can be simplified with the decorator method provided by each `SSMParameter` and `SSMParameterGroup` object. The `@refresh_on_error` decorator will intercept errors (or a specific `error_class`, if given), refresh the parameters values, and attempt to re-call the decorated function. Optionally, you can provide a `callback` argument to implement your own logic (in the example below, to create a new db client with the new password). ```python from ssm_cache import SSMParameter from my_db_lib import Client, InvalidCredentials # pseudo-code param = SSMParameter('my_db_password') my_db_client = Client(password=param.value) def on_error_callback(): my_db_client = Client(password=param.value) @param.refresh_on_error(InvalidCredentials, on_error_callback) def read_record(is_retry=False): return my_db_client.read_record() def lambda_handler(event, context): return { 'record': read_record(), } ``` The `refresh_on_error` decorator supports the following arguments: * **error_class** (default: `Exception`) * **error_callback** (default: `None`) * **retry_argument** (default: `"is_retry"`) ## Replacing the SSM client If you want to replace the default `boto3` SSM client, `SSMParameter` allows you to call `set_ssm_client` and provide your own `boto3` client or even a custom object. Note that such custom object will need to implement two methods: `get_parameters` and `get_parameters_by_path`. For example, here's how you could inject a Placebo client for local tests: ```python import placebo, boto3 from ssm_cache import SSMParameter # create regular boto3 session session = boto3.Session() # attach placebo to the session pill = placebo.attach(session, data_path=PLACEBO_PATH) pill.playback() # create special boto3 client client = session.client('ssm') # inject special client into SSMParameter or SSMParameterGroup SSMParameter.set_ssm_client(client) ``` ## How to contribute Clone this repository, create a virtualenv and install all the dev dependencies: ```bash git clone https://github.com/alexcasalboni/ssm-cache-python.git cd ssm-cache-python virtualenv env source env/bin/activate pip install -r requirements-dev.txt ``` You can run tests with `nose`: ```bash nosetests ``` Generate a coverage report: ```bash nosetests --with-coverage --cover-erase --cover-html --cover-package=ssm_cache open cover/index.html ``` Run pylint: ```bash pylint ssm_cache ``` Note: when you open a new PR, GitHub will run tests on multiple Python environments and verify the new coverage for you, but we highly recommend you run these tasks locally as well before submitting new code. ## What's new? * **version 2.10**: exclude tests folder from site-packages * **version 2.9**: bugfix, versioning support, tests with Python 3.7 * **version 2.8**: bugfix, new tests, fixed Travis build config * **version 2.7**: support for AWS Secrets Manager integration * **version 2.5**: hierarchical parameters, filters, and non-recursiveness support * **version 2.3**: StringList parameters support (auto-conversion) * **version 2.2**: client replacement and boto3/botocore minimum requirements * **version 2.1**: group refresh bugfix * **version 2.0**: new interface, `SSMParameterGroup` support * **version 1.3**: Python3 support * **version 1.0**: initial release ## References and articles * [You should use SSM Parameter Store over Lambda env variables](https://hackernoon.com/you-should-use-ssm-parameter-store-over-lambda-env-variables-5197fc6ea45b) by Yan Cui (similar Node.js implementation) * [AWS System Manager Parameter Store doc](https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html) %package -n python3-ssm-cache Summary: AWS System Manager Parameter Store caching client for Python Provides: python-ssm-cache BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-ssm-cache [![Build Status](https://travis-ci.org/alexcasalboni/ssm-cache-python.svg?branch=master)](https://travis-ci.org/alexcasalboni/ssm-cache-python) [![Coverage Status](https://coveralls.io/repos/github/alexcasalboni/ssm-cache-python/badge.svg)](https://coveralls.io/github/alexcasalboni/ssm-cache-python) [![PyPI version](https://badge.fury.io/py/ssm-cache.svg)](https://badge.fury.io/py/ssm-cache) [![GitHub license](https://img.shields.io/github/license/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/blob/master/LICENSE) [![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/alexcasalboni/ssm-cache-python/graphs/commit-activity) [![GitHub issues](https://img.shields.io/github/issues/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/issues) [![Open Source Love svg2](https://badges.frapsoft.com/os/v2/open-source.svg?v=103)](https://github.com/ellerbrock/open-source-badges/) [![GitHub stars](https://img.shields.io/github/stars/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/stargazers) This module wraps the AWS Parameter Store and adds a caching and grouping layer with max-age invalidation. You can use this module with AWS Lambda to read and refresh parameters and secrets. Your IAM role will require `ssm:GetParameters` permissions (optionally, also `kms:Decrypt` if you use `SecureString` params). ## How to install Install the module with `pip`: ```bash pip install ssm-cache ``` ## How to use it ### Simplest use case A single parameter, configured by name. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') value = param.value ``` ### With cache invalidation You can configure the `max_age` in seconds, after which the values will be automatically refreshed. ```python from ssm_cache import SSMParameter param_1 = SSMParameter('param_1', max_age=300) # 5 min value_1 = param.value param_2 = SSMParameter('param_2', max_age=3600) # 1 hour value_2 = param_2.value ``` ### With multiple parameters You can configure more than one parameter to be fetched/cached/decrypted as a group. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup(max_age=300) param_1 = group.parameter('param_1') param_2 = group.parameter('param_2') value_1 = param_1.value value_2 = param_2.value ``` ### With hierarchical parameters You can fetch/cache a group of parameters under a given prefix. Optionally, the group itself could have its own base path. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup(base_path="/Foo") foo_bar = group.parameter('/Bar') # will fetch /Foo/Bar baz_params = group.parameters('/Baz') # will fetch /Foo/Baz/1 and /Foo/Baz/2 assert len(group) == 3 ``` Note: you can call `group.parameters(...)` multiple times. If caching is enabled, the group's cache will expire when the firstly fetched parameters expire. #### Hierarchical parameters and filters You can filter by parameter `Type` and KMS `KeyId`, either building the filter object manually or using a class-based approach (which provides some additional checks before invoking the API). ```python from ssm_cache import SSMParameterGroup from ssm_cache.filters import SSMFilterType group = SSMParameterGroup() # manual filter definition params = group.parameters( path="/Foo/Bar", filters=[{ 'Key': 'Type', 'Option': 'Equals', 'Values': ['StringList'] }], ) # class-based filter params = group.parameters( path="/Foo/Bar", filters=[SSMFilterType().value('StringList')], # will validate allowed value(s) ) ``` #### Hierarchical parameters and non-recursiveness You can disable recursion when fetching parameters via prefix. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() # will fetch /Foo/1, but not /Foo/Bar/1 params = group.parameters( path="/Foo", recursive=False, ) ``` ### With StringList parameters `StringList` parameters ([documentation here](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ssm-parameter.html#cfn-ssm-parameter-type)) are automatically converted to Python lists with no additional configuration. ```python from ssm_cache import SSMParameter # "my_twitter_api_keys" is a StringList parameter (four comma-separated values) twitter_params = SSMParameter('my_twitter_api_keys') key, secret, access_token, access_token_secret = twitter_params.value ``` ### Explicit refresh You can manually force a refresh on a parameter or parameter group. Note that if a parameter is part of a group, the refresh operation will involve the entire group. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') value = param.value param.refresh() new_value = param.value ``` ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() param_1 = group.parameter('param_1') param_2 = group.parameter('param_2') value_1 = param_1.value value_2 = param_2.value group.refresh() new_value_1 = param_1.value new_value_2 = param_2.value param_1.refresh() new_new_value_1 = param_1.value new_new_value_2 = param_2.value # one parameter refreshes the whole group ``` ### Without decryption Decryption is enabled by default, but you can explicitly disable it (works for `SSMParameter` and `SSMGroup`). ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name', with_decryption=False) value = param.value ``` ### AWS Secrets Manager Integration You can read [AWS Secrets Manager](https://aws.amazon.com/secrets-manager/) secrets transparently by using the `SecretsManagerParameter` class, which comes with the same interface of `SSMParameter` and performs some additional prefixing and validation. ```python from ssm_cache import SecretsManagerParameter secret = SecretsManagerParameter('my_secret_name') value = secret.value ``` Secrets can be added to a `SSMParameterGroup` as well, although no group prefix will be applied. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() param = group.parameter('my_param') secret = group.secret('my_secret') param_value = param.value secret_value = secret.value ``` ### Versioning support SSM Parameter Store supports version selectors ([documentation here](https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-versions.html)). By default, the latest version is fetched if you don't specify it. Here is how you can retrieve a specific parameter version: ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name:2') value = param.value ``` Please note that invoking `param.refresh()` will not fetch newer versions. This is the intended behavior, as version selection should be used only when you need a specific parameter version. If you don't specify any version, you can always read the current version of a parameter. In this case, invoking `param.refresh()` will invoke the new version. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') print(param.version) # will print an int ``` ## Usage with AWS Lambda Your [AWS Lambda](https://aws.amazon.com/lambda/) code will look similar to the following snippet. ```python from ssm_cache import SSMParameter, SecretsManagerParameter param = SSMParameter('my_param_name') secret = SecretsManagerParameter('my_secret_name') def lambda_handler(event, context): dbname = param.value password = secret.value return 'Hello from Lambda with dbname %s and password %s' % (dbname, password) ``` ## Complex invalidation based on "signals" You may want to explicitly refresh the parameter cache when you believe the cached value expired. In the example below, we refresh the parameter value when an `InvalidCredentials` exception is detected (see the [decorator utility](#decorator-utility) for a simpler version!). ```python from ssm_cache import SSMParameter from my_db_lib import Client, InvalidCredentials # pseudo-code param = SSMParameter('my_db_password') my_db_client = Client(password=param.value) def read_record(is_retry=False): try: return my_db_client.read_record() except InvalidCredentials: if not is_retry: # avoid infinite recursion param.refresh() # force parameter refresh my_db_client = Client(password=param.value) # re-configure db client return read_record(is_retry=True) # let's try again :) def lambda_handler(event, context): return { 'record': read_record(), } ``` ## Decorator utility The retry logic shown above can be simplified with the decorator method provided by each `SSMParameter` and `SSMParameterGroup` object. The `@refresh_on_error` decorator will intercept errors (or a specific `error_class`, if given), refresh the parameters values, and attempt to re-call the decorated function. Optionally, you can provide a `callback` argument to implement your own logic (in the example below, to create a new db client with the new password). ```python from ssm_cache import SSMParameter from my_db_lib import Client, InvalidCredentials # pseudo-code param = SSMParameter('my_db_password') my_db_client = Client(password=param.value) def on_error_callback(): my_db_client = Client(password=param.value) @param.refresh_on_error(InvalidCredentials, on_error_callback) def read_record(is_retry=False): return my_db_client.read_record() def lambda_handler(event, context): return { 'record': read_record(), } ``` The `refresh_on_error` decorator supports the following arguments: * **error_class** (default: `Exception`) * **error_callback** (default: `None`) * **retry_argument** (default: `"is_retry"`) ## Replacing the SSM client If you want to replace the default `boto3` SSM client, `SSMParameter` allows you to call `set_ssm_client` and provide your own `boto3` client or even a custom object. Note that such custom object will need to implement two methods: `get_parameters` and `get_parameters_by_path`. For example, here's how you could inject a Placebo client for local tests: ```python import placebo, boto3 from ssm_cache import SSMParameter # create regular boto3 session session = boto3.Session() # attach placebo to the session pill = placebo.attach(session, data_path=PLACEBO_PATH) pill.playback() # create special boto3 client client = session.client('ssm') # inject special client into SSMParameter or SSMParameterGroup SSMParameter.set_ssm_client(client) ``` ## How to contribute Clone this repository, create a virtualenv and install all the dev dependencies: ```bash git clone https://github.com/alexcasalboni/ssm-cache-python.git cd ssm-cache-python virtualenv env source env/bin/activate pip install -r requirements-dev.txt ``` You can run tests with `nose`: ```bash nosetests ``` Generate a coverage report: ```bash nosetests --with-coverage --cover-erase --cover-html --cover-package=ssm_cache open cover/index.html ``` Run pylint: ```bash pylint ssm_cache ``` Note: when you open a new PR, GitHub will run tests on multiple Python environments and verify the new coverage for you, but we highly recommend you run these tasks locally as well before submitting new code. ## What's new? * **version 2.10**: exclude tests folder from site-packages * **version 2.9**: bugfix, versioning support, tests with Python 3.7 * **version 2.8**: bugfix, new tests, fixed Travis build config * **version 2.7**: support for AWS Secrets Manager integration * **version 2.5**: hierarchical parameters, filters, and non-recursiveness support * **version 2.3**: StringList parameters support (auto-conversion) * **version 2.2**: client replacement and boto3/botocore minimum requirements * **version 2.1**: group refresh bugfix * **version 2.0**: new interface, `SSMParameterGroup` support * **version 1.3**: Python3 support * **version 1.0**: initial release ## References and articles * [You should use SSM Parameter Store over Lambda env variables](https://hackernoon.com/you-should-use-ssm-parameter-store-over-lambda-env-variables-5197fc6ea45b) by Yan Cui (similar Node.js implementation) * [AWS System Manager Parameter Store doc](https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html) %package help Summary: Development documents and examples for ssm-cache Provides: python3-ssm-cache-doc %description help [![Build Status](https://travis-ci.org/alexcasalboni/ssm-cache-python.svg?branch=master)](https://travis-ci.org/alexcasalboni/ssm-cache-python) [![Coverage Status](https://coveralls.io/repos/github/alexcasalboni/ssm-cache-python/badge.svg)](https://coveralls.io/github/alexcasalboni/ssm-cache-python) [![PyPI version](https://badge.fury.io/py/ssm-cache.svg)](https://badge.fury.io/py/ssm-cache) [![GitHub license](https://img.shields.io/github/license/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/blob/master/LICENSE) [![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/alexcasalboni/ssm-cache-python/graphs/commit-activity) [![GitHub issues](https://img.shields.io/github/issues/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/issues) [![Open Source Love svg2](https://badges.frapsoft.com/os/v2/open-source.svg?v=103)](https://github.com/ellerbrock/open-source-badges/) [![GitHub stars](https://img.shields.io/github/stars/alexcasalboni/ssm-cache-python.svg)](https://github.com/alexcasalboni/ssm-cache-python/stargazers) This module wraps the AWS Parameter Store and adds a caching and grouping layer with max-age invalidation. You can use this module with AWS Lambda to read and refresh parameters and secrets. Your IAM role will require `ssm:GetParameters` permissions (optionally, also `kms:Decrypt` if you use `SecureString` params). ## How to install Install the module with `pip`: ```bash pip install ssm-cache ``` ## How to use it ### Simplest use case A single parameter, configured by name. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') value = param.value ``` ### With cache invalidation You can configure the `max_age` in seconds, after which the values will be automatically refreshed. ```python from ssm_cache import SSMParameter param_1 = SSMParameter('param_1', max_age=300) # 5 min value_1 = param.value param_2 = SSMParameter('param_2', max_age=3600) # 1 hour value_2 = param_2.value ``` ### With multiple parameters You can configure more than one parameter to be fetched/cached/decrypted as a group. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup(max_age=300) param_1 = group.parameter('param_1') param_2 = group.parameter('param_2') value_1 = param_1.value value_2 = param_2.value ``` ### With hierarchical parameters You can fetch/cache a group of parameters under a given prefix. Optionally, the group itself could have its own base path. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup(base_path="/Foo") foo_bar = group.parameter('/Bar') # will fetch /Foo/Bar baz_params = group.parameters('/Baz') # will fetch /Foo/Baz/1 and /Foo/Baz/2 assert len(group) == 3 ``` Note: you can call `group.parameters(...)` multiple times. If caching is enabled, the group's cache will expire when the firstly fetched parameters expire. #### Hierarchical parameters and filters You can filter by parameter `Type` and KMS `KeyId`, either building the filter object manually or using a class-based approach (which provides some additional checks before invoking the API). ```python from ssm_cache import SSMParameterGroup from ssm_cache.filters import SSMFilterType group = SSMParameterGroup() # manual filter definition params = group.parameters( path="/Foo/Bar", filters=[{ 'Key': 'Type', 'Option': 'Equals', 'Values': ['StringList'] }], ) # class-based filter params = group.parameters( path="/Foo/Bar", filters=[SSMFilterType().value('StringList')], # will validate allowed value(s) ) ``` #### Hierarchical parameters and non-recursiveness You can disable recursion when fetching parameters via prefix. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() # will fetch /Foo/1, but not /Foo/Bar/1 params = group.parameters( path="/Foo", recursive=False, ) ``` ### With StringList parameters `StringList` parameters ([documentation here](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ssm-parameter.html#cfn-ssm-parameter-type)) are automatically converted to Python lists with no additional configuration. ```python from ssm_cache import SSMParameter # "my_twitter_api_keys" is a StringList parameter (four comma-separated values) twitter_params = SSMParameter('my_twitter_api_keys') key, secret, access_token, access_token_secret = twitter_params.value ``` ### Explicit refresh You can manually force a refresh on a parameter or parameter group. Note that if a parameter is part of a group, the refresh operation will involve the entire group. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') value = param.value param.refresh() new_value = param.value ``` ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() param_1 = group.parameter('param_1') param_2 = group.parameter('param_2') value_1 = param_1.value value_2 = param_2.value group.refresh() new_value_1 = param_1.value new_value_2 = param_2.value param_1.refresh() new_new_value_1 = param_1.value new_new_value_2 = param_2.value # one parameter refreshes the whole group ``` ### Without decryption Decryption is enabled by default, but you can explicitly disable it (works for `SSMParameter` and `SSMGroup`). ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name', with_decryption=False) value = param.value ``` ### AWS Secrets Manager Integration You can read [AWS Secrets Manager](https://aws.amazon.com/secrets-manager/) secrets transparently by using the `SecretsManagerParameter` class, which comes with the same interface of `SSMParameter` and performs some additional prefixing and validation. ```python from ssm_cache import SecretsManagerParameter secret = SecretsManagerParameter('my_secret_name') value = secret.value ``` Secrets can be added to a `SSMParameterGroup` as well, although no group prefix will be applied. ```python from ssm_cache import SSMParameterGroup group = SSMParameterGroup() param = group.parameter('my_param') secret = group.secret('my_secret') param_value = param.value secret_value = secret.value ``` ### Versioning support SSM Parameter Store supports version selectors ([documentation here](https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-versions.html)). By default, the latest version is fetched if you don't specify it. Here is how you can retrieve a specific parameter version: ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name:2') value = param.value ``` Please note that invoking `param.refresh()` will not fetch newer versions. This is the intended behavior, as version selection should be used only when you need a specific parameter version. If you don't specify any version, you can always read the current version of a parameter. In this case, invoking `param.refresh()` will invoke the new version. ```python from ssm_cache import SSMParameter param = SSMParameter('my_param_name') print(param.version) # will print an int ``` ## Usage with AWS Lambda Your [AWS Lambda](https://aws.amazon.com/lambda/) code will look similar to the following snippet. ```python from ssm_cache import SSMParameter, SecretsManagerParameter param = SSMParameter('my_param_name') secret = SecretsManagerParameter('my_secret_name') def lambda_handler(event, context): dbname = param.value password = secret.value return 'Hello from Lambda with dbname %s and password %s' % (dbname, password) ``` ## Complex invalidation based on "signals" You may want to explicitly refresh the parameter cache when you believe the cached value expired. In the example below, we refresh the parameter value when an `InvalidCredentials` exception is detected (see the [decorator utility](#decorator-utility) for a simpler version!). ```python from ssm_cache import SSMParameter from my_db_lib import Client, InvalidCredentials # pseudo-code param = SSMParameter('my_db_password') my_db_client = Client(password=param.value) def read_record(is_retry=False): try: return my_db_client.read_record() except InvalidCredentials: if not is_retry: # avoid infinite recursion param.refresh() # force parameter refresh my_db_client = Client(password=param.value) # re-configure db client return read_record(is_retry=True) # let's try again :) def lambda_handler(event, context): return { 'record': read_record(), } ``` ## Decorator utility The retry logic shown above can be simplified with the decorator method provided by each `SSMParameter` and `SSMParameterGroup` object. The `@refresh_on_error` decorator will intercept errors (or a specific `error_class`, if given), refresh the parameters values, and attempt to re-call the decorated function. Optionally, you can provide a `callback` argument to implement your own logic (in the example below, to create a new db client with the new password). ```python from ssm_cache import SSMParameter from my_db_lib import Client, InvalidCredentials # pseudo-code param = SSMParameter('my_db_password') my_db_client = Client(password=param.value) def on_error_callback(): my_db_client = Client(password=param.value) @param.refresh_on_error(InvalidCredentials, on_error_callback) def read_record(is_retry=False): return my_db_client.read_record() def lambda_handler(event, context): return { 'record': read_record(), } ``` The `refresh_on_error` decorator supports the following arguments: * **error_class** (default: `Exception`) * **error_callback** (default: `None`) * **retry_argument** (default: `"is_retry"`) ## Replacing the SSM client If you want to replace the default `boto3` SSM client, `SSMParameter` allows you to call `set_ssm_client` and provide your own `boto3` client or even a custom object. Note that such custom object will need to implement two methods: `get_parameters` and `get_parameters_by_path`. For example, here's how you could inject a Placebo client for local tests: ```python import placebo, boto3 from ssm_cache import SSMParameter # create regular boto3 session session = boto3.Session() # attach placebo to the session pill = placebo.attach(session, data_path=PLACEBO_PATH) pill.playback() # create special boto3 client client = session.client('ssm') # inject special client into SSMParameter or SSMParameterGroup SSMParameter.set_ssm_client(client) ``` ## How to contribute Clone this repository, create a virtualenv and install all the dev dependencies: ```bash git clone https://github.com/alexcasalboni/ssm-cache-python.git cd ssm-cache-python virtualenv env source env/bin/activate pip install -r requirements-dev.txt ``` You can run tests with `nose`: ```bash nosetests ``` Generate a coverage report: ```bash nosetests --with-coverage --cover-erase --cover-html --cover-package=ssm_cache open cover/index.html ``` Run pylint: ```bash pylint ssm_cache ``` Note: when you open a new PR, GitHub will run tests on multiple Python environments and verify the new coverage for you, but we highly recommend you run these tasks locally as well before submitting new code. ## What's new? * **version 2.10**: exclude tests folder from site-packages * **version 2.9**: bugfix, versioning support, tests with Python 3.7 * **version 2.8**: bugfix, new tests, fixed Travis build config * **version 2.7**: support for AWS Secrets Manager integration * **version 2.5**: hierarchical parameters, filters, and non-recursiveness support * **version 2.3**: StringList parameters support (auto-conversion) * **version 2.2**: client replacement and boto3/botocore minimum requirements * **version 2.1**: group refresh bugfix * **version 2.0**: new interface, `SSMParameterGroup` support * **version 1.3**: Python3 support * **version 1.0**: initial release ## References and articles * [You should use SSM Parameter Store over Lambda env variables](https://hackernoon.com/you-should-use-ssm-parameter-store-over-lambda-env-variables-5197fc6ea45b) by Yan Cui (similar Node.js implementation) * [AWS System Manager Parameter Store doc](https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html) %prep %autosetup -n ssm-cache-2.10 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-ssm-cache -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 2.10-1 - Package Spec generated