%global _empty_manifest_terminate_build 0 Name: python-torchlayers-nightly Version: 1681171628 Release: 1 Summary: Input shape inference and SOTA custom layers for PyTorch. License: MIT URL: https://github.com/pypa/torchlayers Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f0/36/65b339c5b9cafbb957cc5663454075369fdd9ec99f2d5fbfaf99ad2811c2/torchlayers-nightly-1681171628.tar.gz BuildArch: noarch Requires: python3-torch %description | Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker | |---------|------|-------|----------|-------|------|--------|---------|--------| | [![Version](https://img.shields.io/static/v1?label=&message=0.1.1&color=377EF0&style=for-the-badge)](https://github.com/szymonmaszke/torchlayers/releases) | [![Documentation](https://img.shields.io/static/v1?label=&message=docs&color=EE4C2C&style=for-the-badge)](https://szymonmaszke.github.io/torchlayers/) | ![Tests](https://img.shields.io/github/workflow/status/szymonmaszke/torchlayers/test?label=%20&style=for-the-badge) | [![codecov](https://codecov.io/gh/szymonmaszke/torchlayers/branch/master/graph/badge.svg?token=GbZmdqbTWM)](https://codecov.io/gh/szymonmaszke/torchlayers) | [![codebeat badge](https://codebeat.co/badges/0e3d33b0-95a4-429c-8692-881a4ffeac6b)](https://codebeat.co/projects/github-com-szymonmaszke-torchlayers-master) | [![PyPI](https://img.shields.io/static/v1?label=&message=PyPI&color=377EF0&style=for-the-badge)](https://pypi.org/project/torchlayers/) | [![Python](https://img.shields.io/static/v1?label=&message=>=3.7&color=377EF0&style=for-the-badge&logo=python&logoColor=F8C63D)](https://www.python.org/) | [![PyTorch](https://img.shields.io/static/v1?label=&message=>=1.3.0&color=EE4C2C&style=for-the-badge)](https://pytorch.org/) | [![Docker](https://img.shields.io/static/v1?label=&message=docker&color=309cef&style=for-the-badge)](https://hub.docker.com/r/szymonmaszke/torchlayers) | [__torchlayers__](https://szymonmaszke.github.io/torchlayers/) is a library based on [__PyTorch__](https://pytorch.org/) providing __automatic shape and dimensionality inference of `torch.nn` layers__ + additional building blocks featured in current SOTA architectures (e.g. [Efficient-Net](https://arxiv.org/abs/1905.11946)). Above requires no user intervention (except single call to `torchlayers.build`) similarly to the one seen in [__Keras__](https://www.tensorflow.org/guide/keras). ### Main functionalities: * __Shape inference__ for most of `torch.nn` module (__convolutional, recurrent, transformer, attention and linear layers__) * __Dimensionality inference__ (e.g. `torchlayers.Conv` working as `torch.nn.Conv1d/2d/3d` based on `input shape`) * __Shape inference of custom modules__ (see examples section) * __Additional [Keras-like](https://www.tensorflow.org/guide/keras) layers__ (e.g. `torchlayers.Reshape` or `torchlayers.StandardNormalNoise`) * __Additional SOTA layers__ mostly from ImageNet competitions (e.g. [PolyNet](https://arxiv.org/abs/1608.06993), [Squeeze-And-Excitation](https://arxiv.org/abs/1709.01507), [StochasticDepth](www.arxiv.org/abs/1512.03385>)) * __Useful defaults__ (`"same"` padding and default `kernel_size=3` for `Conv`, dropout rates etc.) * __Zero overhead and [torchscript](https://pytorch.org/docs/stable/jit.html) support__ __Keep in mind this library works almost exactly like PyTorch originally__. What that means is you can use `Sequential`, __define your own networks of any complexity using `torch.nn.Module`__, create new layers with shape inference etc. _See below to get some intuition about library_. # Examples For full functionality please check [__torchlayers documentation__](https://szymonmaszke.github.io/torchlayers/). Below examples should introduce all necessary concepts you should know. ## Basic classifier __All__ `torch.nn` modules can be used through `torchlayers` and __each module with input shape__ will be appropriately modified with it's input inferable counterpart. ```python import torchlayers as tl class Classifier(tl.Module): def __init__(self): super().__init__() self.conv1 = tl.Conv2d(64, kernel_size=6) self.conv2 = tl.Conv2d(128, kernel_size=3) self.conv3 = tl.Conv2d(256, kernel_size=3, padding=1) # New layer, more on that in the next example self.pooling = tl.GlobalMaxPool() self.dense = tl.Linear(10) def forward(self, x): x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.relu(self.conv3(x)) return self.dense(self.pooling(x)) # Pass model and any example inputs afterwards clf = tl.build(Classifier(), torch.randn(1, 3, 32, 32)) ``` Above `torchlayers.Linear(out_features=10)` is used. It is "equivalent" to original PyTorch's `torch.nn.Linear(in_features=?, out_features=10)` where `in_features` will be inferred from example input input during `torchlayers.build` call. Same thing happens with `torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...)` which can be replaced directly by `tl.Conv2d(out_channels, kernel_size, ...)`. __Just remember to pass example input through the network!__ ## Simple image and text classifier in one! * We will use single "model" for both tasks. Firstly let's define it using `torch.nn` and `torchlayers`: ```python import torch import torchlayers as tl # torch.nn and torchlayers can be mixed easily model = torch.nn.Sequential( tl.Conv(64), # specify ONLY out_channels torch.nn.ReLU(), # use torch.nn wherever you wish tl.BatchNorm(), # BatchNormNd inferred from input tl.Conv(128), # Default kernel_size equal to 3 tl.ReLU(), tl.Conv(256, kernel_size=11), # "same" padding as default tl.GlobalMaxPool(), # Known from Keras tl.Linear(10), # Output for 10 classes ) print(model) ``` Above would give you model's summary like this (__notice question marks for not yet inferred values__): ```python Sequential( (0): Conv(in_channels=?, out_channels=64, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (1): ReLU() (2): BatchNorm(num_features=?, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): Conv(in_channels=?, out_channels=128, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (4): ReLU() (5): Conv(in_channels=?, out_channels=256, kernel_size=11, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (6): GlobalMaxPool() (7): Linear(in_features=?, out_features=10, bias=True) ) ``` * Now you can __build__/instantiate your model with example input (in this case MNIST-like): ```python mnist_model = tl.build(model, torch.randn(1, 3, 28, 28)) ``` * Or if it's text classification you are after, same model could be built with different `input shape` (e.g. for text classification using `300` dimensional pretrained embedding): ```python # [batch, embedding, timesteps], first dimension > 1 for BatchNorm1d to work text_model = tl.build(model, torch.randn(2, 300, 1)) ``` * Finally, you can `print` both models after instantiation, provided below side by-side for readability (__notice different dimenstionality, e.g. `Conv2d` vs `Conv1d` after `torchlayers.build`__): ```python # TEXT CLASSIFIER MNIST CLASSIFIER Sequential( Sequential( (0): Conv1d(300, 64) (0): Conv2d(3, 64) (1): ReLU() (1): ReLU() (2): BatchNorm1d(64) (2): BatchNorm2d(64) (3): Conv1d(64, 128) (3): Conv2d(64, 128) (4): ReLU() (4): ReLU() (5): Conv1d(128, 256) (5): Conv2d(128, 256) (6): GlobalMaxPool() (6): GlobalMaxPool() (7): Linear(256, 10) (7): Linear(256, 10) ) ) ``` As you can see both modules "compiled" into original `pytorch` layers. ## Custom modules with shape inference capabilities User can define any module and make it shape inferable with `torchlayers.infer` function: ```python # Class defined with in_features # It might be a good practice to use _ prefix and Impl as postfix # to differentiate from shape inferable version class _MyLinearImpl(torch.nn.Module): def __init__(self, in_features: int, out_features: int): super().__init__() self.weight = torch.nn.Parameter(torch.randn(out_features, in_features)) self.bias = torch.nn.Parameter(torch.randn(out_features)) def forward(self, inputs): return torch.nn.functional.linear(inputs, self.weight, self.bias) MyLinear = tl.infer(_MyLinearImpl) # Build and use just like any other layer in this library layer =tl.build(MyLinear(out_features=32), torch.randn(1, 64)) layer(torch.randn(1, 64)) ``` By default `inputs.shape[1]` will be used as `in_features` value during initial `forward` pass. If you wish to use different `index` (e.g. to infer using `inputs.shape[3]`) use `MyLayer = tl.infer(_MyLayerImpl, index=3)` as a decorator. ## Autoencoder with inverted residual bottleneck and pixel shuffle Please check code comments and [__documentation__](https://szymonmaszke.github.io/torchlayers/) if needed. If you are unsure what autoencoder is you could see [__this example blog post__](https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726). Below is a convolutional denoising autoencoder example for `ImageNet`-like images. Think of it like a demonstration of capabilities of different layers and building blocks provided by `torchlayers`. ```python # Input - 3 x 256 x 256 for ImageNet reconstruction class AutoEncoder(torch.nn.Module): def __init__(self): super().__init__() self.encoder = tl.Sequential( tl.StandardNormalNoise(), # Apply noise to input images tl.Conv(64, kernel_size=7), tl.activations.Swish(), # Direct access to module .activations tl.InvertedResidualBottleneck(squeeze_excitation=False), tl.AvgPool(), # shape 64 x 128 x 128, kernel_size=2 by default tl.HardSwish(), # Access simply through tl tl.SeparableConv(128), # Up number of channels to 128 tl.InvertedResidualBottleneck(), # Default with squeeze excitation torch.nn.ReLU(), tl.AvgPool(), # shape 128 x 64 x 64, kernel_size=2 by default tl.DepthwiseConv(256), # DepthwiseConv easier to use # Pass input thrice through the same weights like in PolyNet tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ReLU(), # all torch.nn can be accessed via tl tl.MaxPool(), # shape 256 x 32 x 32 tl.Fire(out_channels=512), # shape 512 x 32 x 32 tl.SqueezeExcitation(hidden=64), tl.InvertedResidualBottleneck(), tl.MaxPool(), # shape 512 x 16 x 16 tl.InvertedResidualBottleneck(squeeze_excitation=False), # Randomly switch off the last two layers with 0.5 probability tl.StochasticDepth( torch.nn.Sequential( tl.InvertedResidualBottleneck(squeeze_excitation=False), tl.InvertedResidualBottleneck(squeeze_excitation=False), ), p=0.5, ), tl.AvgPool(), # shape 512 x 8 x 8 ) # This one is more "standard" self.decoder = tl.Sequential( tl.Poly(tl.InvertedResidualBottleneck(), order=2), # Has ICNR initialization by default after calling `build` tl.ConvPixelShuffle(out_channels=512, upscale_factor=2), # Shape 512 x 16 x 16 after PixelShuffle tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ConvPixelShuffle(out_channels=256, upscale_factor=2), # Shape 256 x 32 x 32 tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ConvPixelShuffle(out_channels=128, upscale_factor=2), # Shape 128 x 64 x 64 tl.Poly(tl.InvertedResidualBottleneck(), order=4), tl.ConvPixelShuffle(out_channels=64, upscale_factor=2), # Shape 64 x 128 x 128 tl.InvertedResidualBottleneck(), tl.Conv(256), tl.Dropout(), # Defaults to 0.5 and Dropout2d for images tl.Swish(), tl.InstanceNorm(), tl.ConvPixelShuffle(out_channels=32, upscale_factor=2), # Shape 32 x 256 x 256 tl.Conv(16), tl.Swish(), tl.Conv(3), # Shape 3 x 256 x 256 ) def forward(self, inputs): return self.decoder(self.encoder(inputs)) ``` Now one can instantiate the module and use it with `torch.nn.MSELoss` as per usual. ```python autoencoder = tl.build(AutoEncoder(), torch.randn(1, 3, 256, 256)) ``` # Installation ## [pip]() ### Latest release: ```shell pip install --user torchlayers ``` ### Nightly: ```shell pip install --user torchlayers-nightly ``` ## [Docker](https://hub.docker.com/r/szymonmaszke/torchlayers) __CPU standalone__ and various versions of __GPU enabled__ images are available at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchlayers/tags). For CPU quickstart, issue: ```shell docker pull szymonmaszke/torchlayers:18.04 ``` Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have [nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set. # Contributing If you find issue or would like to see some functionality (or implement one), please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork). %package -n python3-torchlayers-nightly Summary: Input shape inference and SOTA custom layers for PyTorch. Provides: python-torchlayers-nightly BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-torchlayers-nightly | Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker | |---------|------|-------|----------|-------|------|--------|---------|--------| | [![Version](https://img.shields.io/static/v1?label=&message=0.1.1&color=377EF0&style=for-the-badge)](https://github.com/szymonmaszke/torchlayers/releases) | [![Documentation](https://img.shields.io/static/v1?label=&message=docs&color=EE4C2C&style=for-the-badge)](https://szymonmaszke.github.io/torchlayers/) | ![Tests](https://img.shields.io/github/workflow/status/szymonmaszke/torchlayers/test?label=%20&style=for-the-badge) | [![codecov](https://codecov.io/gh/szymonmaszke/torchlayers/branch/master/graph/badge.svg?token=GbZmdqbTWM)](https://codecov.io/gh/szymonmaszke/torchlayers) | [![codebeat badge](https://codebeat.co/badges/0e3d33b0-95a4-429c-8692-881a4ffeac6b)](https://codebeat.co/projects/github-com-szymonmaszke-torchlayers-master) | [![PyPI](https://img.shields.io/static/v1?label=&message=PyPI&color=377EF0&style=for-the-badge)](https://pypi.org/project/torchlayers/) | [![Python](https://img.shields.io/static/v1?label=&message=>=3.7&color=377EF0&style=for-the-badge&logo=python&logoColor=F8C63D)](https://www.python.org/) | [![PyTorch](https://img.shields.io/static/v1?label=&message=>=1.3.0&color=EE4C2C&style=for-the-badge)](https://pytorch.org/) | [![Docker](https://img.shields.io/static/v1?label=&message=docker&color=309cef&style=for-the-badge)](https://hub.docker.com/r/szymonmaszke/torchlayers) | [__torchlayers__](https://szymonmaszke.github.io/torchlayers/) is a library based on [__PyTorch__](https://pytorch.org/) providing __automatic shape and dimensionality inference of `torch.nn` layers__ + additional building blocks featured in current SOTA architectures (e.g. [Efficient-Net](https://arxiv.org/abs/1905.11946)). Above requires no user intervention (except single call to `torchlayers.build`) similarly to the one seen in [__Keras__](https://www.tensorflow.org/guide/keras). ### Main functionalities: * __Shape inference__ for most of `torch.nn` module (__convolutional, recurrent, transformer, attention and linear layers__) * __Dimensionality inference__ (e.g. `torchlayers.Conv` working as `torch.nn.Conv1d/2d/3d` based on `input shape`) * __Shape inference of custom modules__ (see examples section) * __Additional [Keras-like](https://www.tensorflow.org/guide/keras) layers__ (e.g. `torchlayers.Reshape` or `torchlayers.StandardNormalNoise`) * __Additional SOTA layers__ mostly from ImageNet competitions (e.g. [PolyNet](https://arxiv.org/abs/1608.06993), [Squeeze-And-Excitation](https://arxiv.org/abs/1709.01507), [StochasticDepth](www.arxiv.org/abs/1512.03385>)) * __Useful defaults__ (`"same"` padding and default `kernel_size=3` for `Conv`, dropout rates etc.) * __Zero overhead and [torchscript](https://pytorch.org/docs/stable/jit.html) support__ __Keep in mind this library works almost exactly like PyTorch originally__. What that means is you can use `Sequential`, __define your own networks of any complexity using `torch.nn.Module`__, create new layers with shape inference etc. _See below to get some intuition about library_. # Examples For full functionality please check [__torchlayers documentation__](https://szymonmaszke.github.io/torchlayers/). Below examples should introduce all necessary concepts you should know. ## Basic classifier __All__ `torch.nn` modules can be used through `torchlayers` and __each module with input shape__ will be appropriately modified with it's input inferable counterpart. ```python import torchlayers as tl class Classifier(tl.Module): def __init__(self): super().__init__() self.conv1 = tl.Conv2d(64, kernel_size=6) self.conv2 = tl.Conv2d(128, kernel_size=3) self.conv3 = tl.Conv2d(256, kernel_size=3, padding=1) # New layer, more on that in the next example self.pooling = tl.GlobalMaxPool() self.dense = tl.Linear(10) def forward(self, x): x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.relu(self.conv3(x)) return self.dense(self.pooling(x)) # Pass model and any example inputs afterwards clf = tl.build(Classifier(), torch.randn(1, 3, 32, 32)) ``` Above `torchlayers.Linear(out_features=10)` is used. It is "equivalent" to original PyTorch's `torch.nn.Linear(in_features=?, out_features=10)` where `in_features` will be inferred from example input input during `torchlayers.build` call. Same thing happens with `torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...)` which can be replaced directly by `tl.Conv2d(out_channels, kernel_size, ...)`. __Just remember to pass example input through the network!__ ## Simple image and text classifier in one! * We will use single "model" for both tasks. Firstly let's define it using `torch.nn` and `torchlayers`: ```python import torch import torchlayers as tl # torch.nn and torchlayers can be mixed easily model = torch.nn.Sequential( tl.Conv(64), # specify ONLY out_channels torch.nn.ReLU(), # use torch.nn wherever you wish tl.BatchNorm(), # BatchNormNd inferred from input tl.Conv(128), # Default kernel_size equal to 3 tl.ReLU(), tl.Conv(256, kernel_size=11), # "same" padding as default tl.GlobalMaxPool(), # Known from Keras tl.Linear(10), # Output for 10 classes ) print(model) ``` Above would give you model's summary like this (__notice question marks for not yet inferred values__): ```python Sequential( (0): Conv(in_channels=?, out_channels=64, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (1): ReLU() (2): BatchNorm(num_features=?, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): Conv(in_channels=?, out_channels=128, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (4): ReLU() (5): Conv(in_channels=?, out_channels=256, kernel_size=11, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (6): GlobalMaxPool() (7): Linear(in_features=?, out_features=10, bias=True) ) ``` * Now you can __build__/instantiate your model with example input (in this case MNIST-like): ```python mnist_model = tl.build(model, torch.randn(1, 3, 28, 28)) ``` * Or if it's text classification you are after, same model could be built with different `input shape` (e.g. for text classification using `300` dimensional pretrained embedding): ```python # [batch, embedding, timesteps], first dimension > 1 for BatchNorm1d to work text_model = tl.build(model, torch.randn(2, 300, 1)) ``` * Finally, you can `print` both models after instantiation, provided below side by-side for readability (__notice different dimenstionality, e.g. `Conv2d` vs `Conv1d` after `torchlayers.build`__): ```python # TEXT CLASSIFIER MNIST CLASSIFIER Sequential( Sequential( (0): Conv1d(300, 64) (0): Conv2d(3, 64) (1): ReLU() (1): ReLU() (2): BatchNorm1d(64) (2): BatchNorm2d(64) (3): Conv1d(64, 128) (3): Conv2d(64, 128) (4): ReLU() (4): ReLU() (5): Conv1d(128, 256) (5): Conv2d(128, 256) (6): GlobalMaxPool() (6): GlobalMaxPool() (7): Linear(256, 10) (7): Linear(256, 10) ) ) ``` As you can see both modules "compiled" into original `pytorch` layers. ## Custom modules with shape inference capabilities User can define any module and make it shape inferable with `torchlayers.infer` function: ```python # Class defined with in_features # It might be a good practice to use _ prefix and Impl as postfix # to differentiate from shape inferable version class _MyLinearImpl(torch.nn.Module): def __init__(self, in_features: int, out_features: int): super().__init__() self.weight = torch.nn.Parameter(torch.randn(out_features, in_features)) self.bias = torch.nn.Parameter(torch.randn(out_features)) def forward(self, inputs): return torch.nn.functional.linear(inputs, self.weight, self.bias) MyLinear = tl.infer(_MyLinearImpl) # Build and use just like any other layer in this library layer =tl.build(MyLinear(out_features=32), torch.randn(1, 64)) layer(torch.randn(1, 64)) ``` By default `inputs.shape[1]` will be used as `in_features` value during initial `forward` pass. If you wish to use different `index` (e.g. to infer using `inputs.shape[3]`) use `MyLayer = tl.infer(_MyLayerImpl, index=3)` as a decorator. ## Autoencoder with inverted residual bottleneck and pixel shuffle Please check code comments and [__documentation__](https://szymonmaszke.github.io/torchlayers/) if needed. If you are unsure what autoencoder is you could see [__this example blog post__](https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726). Below is a convolutional denoising autoencoder example for `ImageNet`-like images. Think of it like a demonstration of capabilities of different layers and building blocks provided by `torchlayers`. ```python # Input - 3 x 256 x 256 for ImageNet reconstruction class AutoEncoder(torch.nn.Module): def __init__(self): super().__init__() self.encoder = tl.Sequential( tl.StandardNormalNoise(), # Apply noise to input images tl.Conv(64, kernel_size=7), tl.activations.Swish(), # Direct access to module .activations tl.InvertedResidualBottleneck(squeeze_excitation=False), tl.AvgPool(), # shape 64 x 128 x 128, kernel_size=2 by default tl.HardSwish(), # Access simply through tl tl.SeparableConv(128), # Up number of channels to 128 tl.InvertedResidualBottleneck(), # Default with squeeze excitation torch.nn.ReLU(), tl.AvgPool(), # shape 128 x 64 x 64, kernel_size=2 by default tl.DepthwiseConv(256), # DepthwiseConv easier to use # Pass input thrice through the same weights like in PolyNet tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ReLU(), # all torch.nn can be accessed via tl tl.MaxPool(), # shape 256 x 32 x 32 tl.Fire(out_channels=512), # shape 512 x 32 x 32 tl.SqueezeExcitation(hidden=64), tl.InvertedResidualBottleneck(), tl.MaxPool(), # shape 512 x 16 x 16 tl.InvertedResidualBottleneck(squeeze_excitation=False), # Randomly switch off the last two layers with 0.5 probability tl.StochasticDepth( torch.nn.Sequential( tl.InvertedResidualBottleneck(squeeze_excitation=False), tl.InvertedResidualBottleneck(squeeze_excitation=False), ), p=0.5, ), tl.AvgPool(), # shape 512 x 8 x 8 ) # This one is more "standard" self.decoder = tl.Sequential( tl.Poly(tl.InvertedResidualBottleneck(), order=2), # Has ICNR initialization by default after calling `build` tl.ConvPixelShuffle(out_channels=512, upscale_factor=2), # Shape 512 x 16 x 16 after PixelShuffle tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ConvPixelShuffle(out_channels=256, upscale_factor=2), # Shape 256 x 32 x 32 tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ConvPixelShuffle(out_channels=128, upscale_factor=2), # Shape 128 x 64 x 64 tl.Poly(tl.InvertedResidualBottleneck(), order=4), tl.ConvPixelShuffle(out_channels=64, upscale_factor=2), # Shape 64 x 128 x 128 tl.InvertedResidualBottleneck(), tl.Conv(256), tl.Dropout(), # Defaults to 0.5 and Dropout2d for images tl.Swish(), tl.InstanceNorm(), tl.ConvPixelShuffle(out_channels=32, upscale_factor=2), # Shape 32 x 256 x 256 tl.Conv(16), tl.Swish(), tl.Conv(3), # Shape 3 x 256 x 256 ) def forward(self, inputs): return self.decoder(self.encoder(inputs)) ``` Now one can instantiate the module and use it with `torch.nn.MSELoss` as per usual. ```python autoencoder = tl.build(AutoEncoder(), torch.randn(1, 3, 256, 256)) ``` # Installation ## [pip]() ### Latest release: ```shell pip install --user torchlayers ``` ### Nightly: ```shell pip install --user torchlayers-nightly ``` ## [Docker](https://hub.docker.com/r/szymonmaszke/torchlayers) __CPU standalone__ and various versions of __GPU enabled__ images are available at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchlayers/tags). For CPU quickstart, issue: ```shell docker pull szymonmaszke/torchlayers:18.04 ``` Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have [nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set. # Contributing If you find issue or would like to see some functionality (or implement one), please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork). %package help Summary: Development documents and examples for torchlayers-nightly Provides: python3-torchlayers-nightly-doc %description help | Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker | |---------|------|-------|----------|-------|------|--------|---------|--------| | [![Version](https://img.shields.io/static/v1?label=&message=0.1.1&color=377EF0&style=for-the-badge)](https://github.com/szymonmaszke/torchlayers/releases) | [![Documentation](https://img.shields.io/static/v1?label=&message=docs&color=EE4C2C&style=for-the-badge)](https://szymonmaszke.github.io/torchlayers/) | ![Tests](https://img.shields.io/github/workflow/status/szymonmaszke/torchlayers/test?label=%20&style=for-the-badge) | [![codecov](https://codecov.io/gh/szymonmaszke/torchlayers/branch/master/graph/badge.svg?token=GbZmdqbTWM)](https://codecov.io/gh/szymonmaszke/torchlayers) | [![codebeat badge](https://codebeat.co/badges/0e3d33b0-95a4-429c-8692-881a4ffeac6b)](https://codebeat.co/projects/github-com-szymonmaszke-torchlayers-master) | [![PyPI](https://img.shields.io/static/v1?label=&message=PyPI&color=377EF0&style=for-the-badge)](https://pypi.org/project/torchlayers/) | [![Python](https://img.shields.io/static/v1?label=&message=>=3.7&color=377EF0&style=for-the-badge&logo=python&logoColor=F8C63D)](https://www.python.org/) | [![PyTorch](https://img.shields.io/static/v1?label=&message=>=1.3.0&color=EE4C2C&style=for-the-badge)](https://pytorch.org/) | [![Docker](https://img.shields.io/static/v1?label=&message=docker&color=309cef&style=for-the-badge)](https://hub.docker.com/r/szymonmaszke/torchlayers) | [__torchlayers__](https://szymonmaszke.github.io/torchlayers/) is a library based on [__PyTorch__](https://pytorch.org/) providing __automatic shape and dimensionality inference of `torch.nn` layers__ + additional building blocks featured in current SOTA architectures (e.g. [Efficient-Net](https://arxiv.org/abs/1905.11946)). Above requires no user intervention (except single call to `torchlayers.build`) similarly to the one seen in [__Keras__](https://www.tensorflow.org/guide/keras). ### Main functionalities: * __Shape inference__ for most of `torch.nn` module (__convolutional, recurrent, transformer, attention and linear layers__) * __Dimensionality inference__ (e.g. `torchlayers.Conv` working as `torch.nn.Conv1d/2d/3d` based on `input shape`) * __Shape inference of custom modules__ (see examples section) * __Additional [Keras-like](https://www.tensorflow.org/guide/keras) layers__ (e.g. `torchlayers.Reshape` or `torchlayers.StandardNormalNoise`) * __Additional SOTA layers__ mostly from ImageNet competitions (e.g. [PolyNet](https://arxiv.org/abs/1608.06993), [Squeeze-And-Excitation](https://arxiv.org/abs/1709.01507), [StochasticDepth](www.arxiv.org/abs/1512.03385>)) * __Useful defaults__ (`"same"` padding and default `kernel_size=3` for `Conv`, dropout rates etc.) * __Zero overhead and [torchscript](https://pytorch.org/docs/stable/jit.html) support__ __Keep in mind this library works almost exactly like PyTorch originally__. What that means is you can use `Sequential`, __define your own networks of any complexity using `torch.nn.Module`__, create new layers with shape inference etc. _See below to get some intuition about library_. # Examples For full functionality please check [__torchlayers documentation__](https://szymonmaszke.github.io/torchlayers/). Below examples should introduce all necessary concepts you should know. ## Basic classifier __All__ `torch.nn` modules can be used through `torchlayers` and __each module with input shape__ will be appropriately modified with it's input inferable counterpart. ```python import torchlayers as tl class Classifier(tl.Module): def __init__(self): super().__init__() self.conv1 = tl.Conv2d(64, kernel_size=6) self.conv2 = tl.Conv2d(128, kernel_size=3) self.conv3 = tl.Conv2d(256, kernel_size=3, padding=1) # New layer, more on that in the next example self.pooling = tl.GlobalMaxPool() self.dense = tl.Linear(10) def forward(self, x): x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.relu(self.conv3(x)) return self.dense(self.pooling(x)) # Pass model and any example inputs afterwards clf = tl.build(Classifier(), torch.randn(1, 3, 32, 32)) ``` Above `torchlayers.Linear(out_features=10)` is used. It is "equivalent" to original PyTorch's `torch.nn.Linear(in_features=?, out_features=10)` where `in_features` will be inferred from example input input during `torchlayers.build` call. Same thing happens with `torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...)` which can be replaced directly by `tl.Conv2d(out_channels, kernel_size, ...)`. __Just remember to pass example input through the network!__ ## Simple image and text classifier in one! * We will use single "model" for both tasks. Firstly let's define it using `torch.nn` and `torchlayers`: ```python import torch import torchlayers as tl # torch.nn and torchlayers can be mixed easily model = torch.nn.Sequential( tl.Conv(64), # specify ONLY out_channels torch.nn.ReLU(), # use torch.nn wherever you wish tl.BatchNorm(), # BatchNormNd inferred from input tl.Conv(128), # Default kernel_size equal to 3 tl.ReLU(), tl.Conv(256, kernel_size=11), # "same" padding as default tl.GlobalMaxPool(), # Known from Keras tl.Linear(10), # Output for 10 classes ) print(model) ``` Above would give you model's summary like this (__notice question marks for not yet inferred values__): ```python Sequential( (0): Conv(in_channels=?, out_channels=64, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (1): ReLU() (2): BatchNorm(num_features=?, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): Conv(in_channels=?, out_channels=128, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (4): ReLU() (5): Conv(in_channels=?, out_channels=256, kernel_size=11, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros) (6): GlobalMaxPool() (7): Linear(in_features=?, out_features=10, bias=True) ) ``` * Now you can __build__/instantiate your model with example input (in this case MNIST-like): ```python mnist_model = tl.build(model, torch.randn(1, 3, 28, 28)) ``` * Or if it's text classification you are after, same model could be built with different `input shape` (e.g. for text classification using `300` dimensional pretrained embedding): ```python # [batch, embedding, timesteps], first dimension > 1 for BatchNorm1d to work text_model = tl.build(model, torch.randn(2, 300, 1)) ``` * Finally, you can `print` both models after instantiation, provided below side by-side for readability (__notice different dimenstionality, e.g. `Conv2d` vs `Conv1d` after `torchlayers.build`__): ```python # TEXT CLASSIFIER MNIST CLASSIFIER Sequential( Sequential( (0): Conv1d(300, 64) (0): Conv2d(3, 64) (1): ReLU() (1): ReLU() (2): BatchNorm1d(64) (2): BatchNorm2d(64) (3): Conv1d(64, 128) (3): Conv2d(64, 128) (4): ReLU() (4): ReLU() (5): Conv1d(128, 256) (5): Conv2d(128, 256) (6): GlobalMaxPool() (6): GlobalMaxPool() (7): Linear(256, 10) (7): Linear(256, 10) ) ) ``` As you can see both modules "compiled" into original `pytorch` layers. ## Custom modules with shape inference capabilities User can define any module and make it shape inferable with `torchlayers.infer` function: ```python # Class defined with in_features # It might be a good practice to use _ prefix and Impl as postfix # to differentiate from shape inferable version class _MyLinearImpl(torch.nn.Module): def __init__(self, in_features: int, out_features: int): super().__init__() self.weight = torch.nn.Parameter(torch.randn(out_features, in_features)) self.bias = torch.nn.Parameter(torch.randn(out_features)) def forward(self, inputs): return torch.nn.functional.linear(inputs, self.weight, self.bias) MyLinear = tl.infer(_MyLinearImpl) # Build and use just like any other layer in this library layer =tl.build(MyLinear(out_features=32), torch.randn(1, 64)) layer(torch.randn(1, 64)) ``` By default `inputs.shape[1]` will be used as `in_features` value during initial `forward` pass. If you wish to use different `index` (e.g. to infer using `inputs.shape[3]`) use `MyLayer = tl.infer(_MyLayerImpl, index=3)` as a decorator. ## Autoencoder with inverted residual bottleneck and pixel shuffle Please check code comments and [__documentation__](https://szymonmaszke.github.io/torchlayers/) if needed. If you are unsure what autoencoder is you could see [__this example blog post__](https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726). Below is a convolutional denoising autoencoder example for `ImageNet`-like images. Think of it like a demonstration of capabilities of different layers and building blocks provided by `torchlayers`. ```python # Input - 3 x 256 x 256 for ImageNet reconstruction class AutoEncoder(torch.nn.Module): def __init__(self): super().__init__() self.encoder = tl.Sequential( tl.StandardNormalNoise(), # Apply noise to input images tl.Conv(64, kernel_size=7), tl.activations.Swish(), # Direct access to module .activations tl.InvertedResidualBottleneck(squeeze_excitation=False), tl.AvgPool(), # shape 64 x 128 x 128, kernel_size=2 by default tl.HardSwish(), # Access simply through tl tl.SeparableConv(128), # Up number of channels to 128 tl.InvertedResidualBottleneck(), # Default with squeeze excitation torch.nn.ReLU(), tl.AvgPool(), # shape 128 x 64 x 64, kernel_size=2 by default tl.DepthwiseConv(256), # DepthwiseConv easier to use # Pass input thrice through the same weights like in PolyNet tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ReLU(), # all torch.nn can be accessed via tl tl.MaxPool(), # shape 256 x 32 x 32 tl.Fire(out_channels=512), # shape 512 x 32 x 32 tl.SqueezeExcitation(hidden=64), tl.InvertedResidualBottleneck(), tl.MaxPool(), # shape 512 x 16 x 16 tl.InvertedResidualBottleneck(squeeze_excitation=False), # Randomly switch off the last two layers with 0.5 probability tl.StochasticDepth( torch.nn.Sequential( tl.InvertedResidualBottleneck(squeeze_excitation=False), tl.InvertedResidualBottleneck(squeeze_excitation=False), ), p=0.5, ), tl.AvgPool(), # shape 512 x 8 x 8 ) # This one is more "standard" self.decoder = tl.Sequential( tl.Poly(tl.InvertedResidualBottleneck(), order=2), # Has ICNR initialization by default after calling `build` tl.ConvPixelShuffle(out_channels=512, upscale_factor=2), # Shape 512 x 16 x 16 after PixelShuffle tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ConvPixelShuffle(out_channels=256, upscale_factor=2), # Shape 256 x 32 x 32 tl.Poly(tl.InvertedResidualBottleneck(), order=3), tl.ConvPixelShuffle(out_channels=128, upscale_factor=2), # Shape 128 x 64 x 64 tl.Poly(tl.InvertedResidualBottleneck(), order=4), tl.ConvPixelShuffle(out_channels=64, upscale_factor=2), # Shape 64 x 128 x 128 tl.InvertedResidualBottleneck(), tl.Conv(256), tl.Dropout(), # Defaults to 0.5 and Dropout2d for images tl.Swish(), tl.InstanceNorm(), tl.ConvPixelShuffle(out_channels=32, upscale_factor=2), # Shape 32 x 256 x 256 tl.Conv(16), tl.Swish(), tl.Conv(3), # Shape 3 x 256 x 256 ) def forward(self, inputs): return self.decoder(self.encoder(inputs)) ``` Now one can instantiate the module and use it with `torch.nn.MSELoss` as per usual. ```python autoencoder = tl.build(AutoEncoder(), torch.randn(1, 3, 256, 256)) ``` # Installation ## [pip]() ### Latest release: ```shell pip install --user torchlayers ``` ### Nightly: ```shell pip install --user torchlayers-nightly ``` ## [Docker](https://hub.docker.com/r/szymonmaszke/torchlayers) __CPU standalone__ and various versions of __GPU enabled__ images are available at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchlayers/tags). For CPU quickstart, issue: ```shell docker pull szymonmaszke/torchlayers:18.04 ``` Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have [nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set. # Contributing If you find issue or would like to see some functionality (or implement one), please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork). %prep %autosetup -n torchlayers-nightly-1681171628 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-torchlayers-nightly -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 1681171628-1 - Package Spec generated