%global _empty_manifest_terminate_build 0
Name:		python-ktrain
Version:	0.35.1
Release:	1
Summary:	ktrain is a wrapper for TensorFlow Keras that makes deep learning and AI more accessible and easier to apply
License:	Apache License 2.0
URL:		https://github.com/amaiya/ktrain
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/32/fd/8b2106a02b9237111baf21fb06662ed7acb24f1e5058bfd8d6fd37463cd6/ktrain-0.35.1.tar.gz
BuildArch:	noarch


%description
### Overview
**ktrain** is a lightweight wrapper for the deep learning library [TensorFlow Keras](https://www.tensorflow.org/guide/keras/overview) (and other libraries) to help build, train, and deploy neural networks and other machine learning models.  Inspired by ML framework extensions like *fastai* and *ludwig*, **ktrain** is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, **ktrain** allows you to easily and quickly:
- employ fast, accurate, and easy-to-use pre-canned models for  `text`, `vision`, `graph`, and `tabular` data:
  - `text` data:
     - **Text Classification**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), [NBSVM](https://www.aclweb.org/anthology/P12-2018), [fastText](https://arxiv.org/abs/1607.01759), and other models <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)]</sup></sub>
     - **Text Regression**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), Embedding-based linear text regression, [fastText](https://arxiv.org/abs/1607.01759), and other models <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_regression_example.ipynb)]</sup></sub>
     - **Sequence Labeling (NER)**:  Bidirectional LSTM with optional [CRF layer](https://arxiv.org/abs/1603.01360) and various embedding schemes such as pretrained [BERT](https://huggingface.co/transformers/pretrained_models.html) and [fasttext](https://fasttext.cc/docs/en/crawl-vectors.html) word embeddings and character embeddings <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb)]</sup></sub>
     - **Ready-to-Use NER models for English, Chinese, and Russian** with no training required <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/shallownlp-examples.ipynb)]</sup></sub>
     - **Sentence Pair Classification**  for tasks like paraphrase detection <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/MRPC-BERT.ipynb)]</sup></sub>
     - **Unsupervised Topic Modeling** with [LDA](http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf)  <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-topic_modeling.ipynb)]</sup></sub>
     - **Document Similarity with One-Class Learning**:  given some documents of interest, find and score new documents that are thematically similar to them using [One-Class Text Classification](https://en.wikipedia.org/wiki/One-class_classification) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-document_similarity_scorer.ipynb)]</sup></sub>
     - **Document Recommendation Engines and Semantic Searches**:  given a text snippet from a sample document, recommend documents that are semantically-related from a larger corpus  <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-recommendation_engine.ipynb)]</sup></sub>
     - **Text Summarization**:  summarize long documents - no training required <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization.ipynb)]</sup></sub>
     - **End-to-End Question-Answering**:  ask a large text corpus questions and receive exact answers <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)]</sup></sub>
     - **Easy-to-Use Built-In Search Engine**:  perform keyword searches on large collections of documents <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)]</sup></sub>
     - **Zero-Shot Learning**:  classify documents into user-provided topics **without** training examples <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb)]</sup></sub>
     - **Language Translation**:  translate text from one language to another <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb)]</sup></sub>
     - **Text Extraction**: Extract text from PDFs, Word documents, etc. <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_extraction_example.ipynb)]</sup></sub>
     - **Speech Transcription**: Extract text from audio files <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb)]</sup></sub>
     - **Universal Information Extraction**:  extract any kind of information from documents by simply phrasing it in the form of a question <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb)]</sup></sub>
     - **Keyphrase Extraction**:  extract keywords from documents <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb)]</sup></sub>
     - **Generative AI with GPT**: Provide instructions to a lightweight ChatGPT-like model running on your own own machine to solve various tasks. Model was fine-tuned on the [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) instruction dataset ([CC By NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en_GB)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/generative_ai_example.ipynb)]</sup>
  - `vision` data:
    - **image classification** (e.g., [ResNet](https://arxiv.org/abs/1512.03385), [Wide ResNet](https://arxiv.org/abs/1605.07146), [Inception](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf)) <sub><sup>[[example notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)]</sup></sub>
    - **image regression** for predicting numerical targets from photos (e.g., age prediction) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/vision/utk_faces_age_prediction-resnet50.ipynb)]</sup></sub>
    - **image captioning** with a pretrained model <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb)]</sup></sub>
    - **object detection** with a pretrained model <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb)]</sup></sub>
  - `graph` data:
    - **node classification** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/pubmed_node_classification-GraphSAGE.ipynb)]</sup></sub>
    - **link prediction** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/cora_link_prediction-GraphSAGE.ipynb)]</sup></sub>
  - `tabular` data:
    - **tabular classification** (e.g., Titanic survival prediction) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)]</sup></sub>
    - **tabular regression** (e.g., predicting house prices) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/tabular/HousePricePrediction-MLP.ipynb)]</sup></sub>
    - **causal inference** using meta-learners <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/tabular/causal_inference_example.ipynb)]</sup></sub>
- estimate an optimal learning rate for your model given your data using a Learning Rate Finder
- utilize learning rate schedules such as the [triangular policy](https://arxiv.org/abs/1506.01186), the [1cycle policy](https://arxiv.org/abs/1803.09820), and [SGDR](https://arxiv.org/abs/1608.03983) to effectively minimize loss and improve generalization
- build text classifiers for any language (e.g., [Arabic Sentiment Analysis with BERT](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ArabicHotelReviews-AraBERT.ipynb), [Chinese Sentiment Analysis with NBSVM](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ChineseHotelReviews-nbsvm.ipynb))
- easily train NER models for any language (e.g., [Dutch NER](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb) )
- load and preprocess text and image data from a variety of formats
- inspect data points that were misclassified and [provide explanations](https://eli5.readthedocs.io/en/latest/) to help improve your model
- leverage a simple prediction API for saving and deploying both models and data-preprocessing steps to make predictions on new raw data
- built-in support for exporting models to [ONNX](https://onnx.ai/) and  [TensorFlow Lite](https://www.tensorflow.org/lite) (see [example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/ktrain-ONNX-TFLite-examples.ipynb) for more information)
### Tutorials
Please see the following tutorial notebooks for a guide on how to use **ktrain** on your projects:
* Tutorial 1:  [Introduction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb)
* Tutorial 2:  [Tuning Learning Rates](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-02-tuning-learning-rates.ipynb)
* Tutorial 3: [Image Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-03-image-classification.ipynb)
* Tutorial 4: [Text Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-04-text-classification.ipynb)
* Tutorial 5: [Learning from Unlabeled Text Data](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb)
* Tutorial 6: [Text Sequence Tagging](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-06-sequence-tagging.ipynb) for Named Entity Recognition
* Tutorial 7: [Graph Node Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-07-graph-node_classification.ipynb) with Graph Neural Networks
* Tutorial 8: [Tabular Classification and Regression](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)
* Tutorial A1: [Additional tricks](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A1-additional-tricks.ipynb), which covers topics such as previewing data augmentation schemes, inspecting intermediate output of Keras models for debugging, setting global weight decay, and use of built-in and custom callbacks.
* Tutorial A2: [Explaining Predictions and Misclassifications](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A2-explaining-predictions.ipynb)
* Tutorial A3: [Text Classification with Hugging Face Transformers](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/tutorials/tutorial-A3-hugging_face_transformers.ipynb)
* Tutorial A4: [Using Custom Data Formats and Models: Text Regression with Extra Regressors](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A4-customdata-text_regression_with_extra_regressors.ipynb)
Some blog tutorials and other guides about **ktrain** are shown below:
> [**ktrain: A Lightweight Wrapper for Keras to Help Train Neural Networks**](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c)
> [**BERT Text Classification in 3 Lines of Code**](https://towardsdatascience.com/bert-text-classification-in-3-lines-of-code-using-keras-264db7e7a358)
> [**Text Classification with Hugging Face Transformers in  TensorFlow 2 (Without Tears)**](https://medium.com/@asmaiya/text-classification-with-hugging-face-transformers-in-tensorflow-2-without-tears-ee50e4f3e7ed)
> [**Build an Open-Domain Question-Answering System With BERT in 3 Lines of Code**](https://towardsdatascience.com/build-an-open-domain-question-answering-system-with-bert-in-3-lines-of-code-da0131bc516b)
> [**Finetuning BERT using ktrain for Disaster Tweets Classification**](https://medium.com/analytics-vidhya/finetuning-bert-using-ktrain-for-disaster-tweets-classification-18f64a50910b) by Hamiz Ahmed
> [**Indonesian NLP Examples with ktrain**](https://github.com/ilos-vigil/ktrain-assessment-study) by Sandy Khosasi
### Examples
Using **ktrain** on **Google Colab**?  See these Colab examples:
-  **text classification:** [a simple demo of Multiclass Text Classification with BERT](https://colab.research.google.com/drive/1AH3fkKiEqBpVpO5ua00scp7zcHs5IDLK)
-  **text classification:** [a simple demo of Multiclass Text Classification with Hugging Face Transformers](https://colab.research.google.com/drive/1YxcceZxsNlvK35pRURgbwvkgejXwFxUt)
- **sequence-tagging (NER):** [NER example using `transformer` word embeddings](https://colab.research.google.com/drive/1whrnmM7ElqbaEhXf760eiOMiYk5MNO-Z?usp=sharing)
- **question-answering:** [End-to-End Question-Answering](https://colab.research.google.com/drive/1tcsEQ7igx7lw_R0Pfpmsg9Wf3DEXyOvk?usp=sharing) using the 20newsgroups dataset.
-  **image classification:** [image classification with Cats vs. Dogs](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)
Tasks such as text classification and image classification can be accomplished easily with
only a few lines of code.
#### Example: Text Classification of [IMDb Movie Reviews](https://ai.stanford.edu/~amaas/data/sentiment/) Using [BERT](https://arxiv.org/pdf/1810.04805.pdf) <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import text as txt
# load data
(x_train, y_train), (x_test, y_test), preproc = txt.texts_from_folder('data/aclImdb', maxlen=500,
                                                                     preprocess_mode='bert',
                                                                     train_test_names=['train', 'test'],
                                                                     classes=['pos', 'neg'])
# load model
model = txt.text_classifier('bert', (x_train, y_train), preproc=preproc)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model,
                             train_data=(x_train, y_train),
                             val_data=(x_test, y_test),
                             batch_size=6)
# find good learning rate
learner.lr_find()             # briefly simulate training to find good learning rate
learner.lr_plot()             # visually identify best learning rate
# train using 1cycle learning rate schedule for 3 epochs
learner.fit_onecycle(2e-5, 3)
```
#### Example: Classifying Images of [Dogs and Cats](https://www.kaggle.com/c/dogs-vs-cats) Using a Pretrained [ResNet50](https://arxiv.org/abs/1512.03385) model <sub><sup>[[see notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)]</sup></sub>
```python
import ktrain
from ktrain import vision as vis
# load data
(train_data, val_data, preproc) = vis.images_from_folder(
                                              datadir='data/dogscats',
                                              data_aug = vis.get_data_aug(horizontal_flip=True),
                                              train_test_names=['train', 'valid'],
                                              target_size=(224,224), color_mode='rgb')
# load model
model = vis.image_classifier('pretrained_resnet50', train_data, val_data, freeze_layers=80)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model=model, train_data=train_data, val_data=val_data,
                             workers=8, use_multiprocessing=False, batch_size=64)
# find good learning rate
learner.lr_find()             # briefly simulate training to find good learning rate
learner.lr_plot()             # visually identify best learning rate
# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(1e-4, checkpoint_folder='/tmp/saved_weights')
```
#### Example: Sequence Labeling for [Named Entity Recognition](https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/version/2) using a randomly initialized [Bidirectional LSTM CRF](https://arxiv.org/abs/1603.01360) model <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/CoNLL2003-BiLSTM_CRF.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import text as txt
# load data
(trn, val, preproc) = txt.entities_from_txt('data/ner_dataset.csv',
                                            sentence_column='Sentence #',
                                            word_column='Word',
                                            tag_column='Tag',
                                            data_format='gmb',
                                            use_char=True) # enable character embeddings
# load model
model = txt.sequence_tagger('bilstm-crf', preproc)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val)
# conventional training for 1 epoch using a learning rate of 0.001 (Keras default for Adam optmizer)
learner.fit(1e-3, 1)
```
#### Example: Node Classification on [Cora Citation Graph](https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz) using a [GraphSAGE](https://arxiv.org/abs/1706.02216) model <sub><sup>[[see notbook](https://github.com/amaiya/ktrain/blob/master/examples/graphs/cora_node_classification-GraphSAGE.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import graph as gr
# load data with supervision ratio of 10%
(trn, val, preproc)  = gr.graph_nodes_from_csv(
                                               'cora.content', # node attributes/labels
                                               'cora.cites',   # edge list
                                               sample_size=20,
                                               holdout_pct=None,
                                               holdout_for_inductive=False,
                                              train_pct=0.1, sep='\t')
# load model
model=gr.graph_node_classifier('graphsage', trn)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=64)
# find good learning rate
learner.lr_find(max_epochs=100) # briefly simulate training to find good learning rate
learner.lr_plot()               # visually identify best learning rate
# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(0.01, checkpoint_folder='/tmp/saved_weights')
```
#### Example: Text Classification with [Hugging Face Transformers](https://github.com/huggingface/transformers) on [20 Newsgroups Dataset](https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html) Using [DistilBERT](https://arxiv.org/abs/1910.01108) <sub><sup>[[see notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A3-hugging_face_transformers.ipynb)]</sup></sub>
```python
# load text data
categories = ['alt.atheism', 'soc.religion.christian','comp.graphics', 'sci.med']
from sklearn.datasets import fetch_20newsgroups
train_b = fetch_20newsgroups(subset='train', categories=categories, shuffle=True)
test_b = fetch_20newsgroups(subset='test',categories=categories, shuffle=True)
(x_train, y_train) = (train_b.data, train_b.target)
(x_test, y_test) = (test_b.data, test_b.target)
# build, train, and validate model (Transformer is wrapper around transformers library)
import ktrain
from ktrain import text
MODEL_NAME = 'distilbert-base-uncased'
t = text.Transformer(MODEL_NAME, maxlen=500, class_names=train_b.target_names)
trn = t.preprocess_train(x_train, y_train)
val = t.preprocess_test(x_test, y_test)
model = t.get_classifier()
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6)
learner.fit_onecycle(5e-5, 4)
learner.validate(class_names=t.get_classes()) # class_names must be string values
# Output from learner.validate()
#                        precision    recall  f1-score   support
#
#           alt.atheism       0.92      0.93      0.93       319
#         comp.graphics       0.97      0.97      0.97       389
#               sci.med       0.97      0.95      0.96       396
#soc.religion.christian       0.96      0.96      0.96       398
#
#              accuracy                           0.96      1502
#             macro avg       0.95      0.96      0.95      1502
#          weighted avg       0.96      0.96      0.96      1502
```
<!--
#### Example: NER With [BioBERT](https://arxiv.org/abs/1901.08746) Embeddings
```python
# NER with BioBERT embeddings
import ktrain
from ktrain import text as txt
x_train= [['IL-2', 'responsiveness', 'requires', 'three', 'distinct', 'elements', 'within', 'the', 'enhancer', '.'], ...]
y_train=[['B-protein', 'O', 'O', 'O', 'O', 'B-DNA', 'O', 'O', 'B-DNA', 'O'], ...]
(trn, val, preproc) = txt.entities_from_array(x_train, y_train)
model = txt.sequence_tagger('bilstm-bert', preproc, bert_model='monologg/biobert_v1.1_pubmed')
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=128)
learner.fit(0.01, 1, cycle_len=5)
```
-->
#### Example: Tabular Classification for [Titanic Survival Prediction](https://www.kaggle.com/c/titanic) Using an MLP  <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/tabular/tabular_classification_and_regression_example.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import tabular
import pandas as pd
train_df = pd.read_csv('train.csv', index_col=0)
train_df = train_df.drop(['Name', 'Ticket', 'Cabin'], 1)
trn, val, preproc = tabular.tabular_from_df(train_df, label_columns=['Survived'], random_state=42)
learner = ktrain.get_learner(tabular.tabular_classifier('mlp', trn), train_data=trn, val_data=val)
learner.lr_find(show_plot=True, max_epochs=5) # estimate learning rate
learner.fit_onecycle(5e-3, 10)
# evaluate held-out labeled test set
tst = preproc.preprocess_test(pd.read_csv('heldout.csv', index_col=0))
learner.evaluate(tst, class_names=preproc.get_classes())
```
#### Additional examples can be found [here](https://github.com/amaiya/ktrain/tree/master/examples).
### Installation
1. Make sure pip is up-to-date with: `pip install -U pip`
2. [Install TensorFlow 2](https://www.tensorflow.org/install) if it is not already installed (e.g., `pip install tensorflow`)
3. Install *ktrain*: `pip install ktrain`
The above should be all you need on Linux systems and cloud computing environments like Google Colab and AWS EC2.  If you are using **ktrain** on a **Windows computer**, you can follow these
[more detailed instructions](https://github.com/amaiya/ktrain/blob/master/FAQ.md#how-do-i-install-ktrain-on-a-windows-machine) that include some extra steps.
**Supported TensorFlow Versions**:  *ktrain* should currently support any version of TensorFlow at or above to v2.3: i.e., `pip install tensorflow>=2.3`.  However, if using `tensorflow>=2.11`, then you must only use legacy optimizers such as `tf.keras.optimizers.legacy.Adam`.  The newer `tf.keras.optimizers.Optimizer` base class is not supported at this time.  For instance, when using TensorFlow 2.11 and above, please use `tf.keras.optimzers.legacy.Adam()` instead of the string `"adam"` in `model.compile`. **ktrain** does this automatically when using out-of-the-box models (e.g., models from the `transformers` library).
#### Additional Notes About Installation
- Some optional, extra libraries used for some operations can be installed as needed. (Notice that **ktrain** is using forked versions of the `eli5` and `stellargraph` libraries in order to support TensorFlow2.)
```python
# for graph module:
pip install https://github.com/amaiya/stellargraph/archive/refs/heads/no_tf_dep_082.zip
# for text.TextPredictor.explain and vision.ImagePredictor.explain:
pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip
# for tabular.TabularPredictor.explain:
pip install shap
# for text.zsl (ZeroShotClassifier), text.summarization, text.translation, text.speech:
pip install torch
# for text.speech:
pip install librosa
# for tabular.causal_inference_model:
pip install causalnlp
# for text.summarization.core.LexRankSummarizer:
pip install sumy
# for text.kw.KeywordExtractor
pip install textblob
```
- **ktrain** purposely pins to a lower version of **transformers** to include support for older versions of TensorFlow.  If you need a newer version of `transformers`, it is usually safe for you to upgrade `transformers`, as long as you do it **after** installing **ktrain**.
- As of v0.30.x, TensorFlow installation is optional and only required if training neural networks.  Although **ktrain** uses TensorFlow for neural network training, it also includes a variety of useful pretrained PyTorch models and sklearn models, which
can be used out-of-the-box **without** having TensorFlow installed, as summarized in this table:
| Feature  | TensorFlow |  PyTorch | Sklearn
| --- | :-: | :-: | :-: |
| [training](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c) any neural network (e.g., text or image classification)  |  ✅  | ❌  | ❌  |
| [End-to-End Question-Answering](https://nbviewer.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb) (pretrained)             |  ✅  | ✅  | ❌  |
| [QA-Based Information Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb) (pretrained)      |  ✅  | ✅  | ❌  |
| [Zero-Shot Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb) (pretrained)   |  ❌  | ✅  | ❌  |
| [Language Translation](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb) (pretrained)      |  ❌  | ✅  | ❌  |
| [Summarization](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization_with_bart.ipynb) (pretrained)             |  ❌  | ✅  | ❌  |
| [Speech Transcription](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Image Captioning](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Object Detection](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Topic Modeling](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb) (sklearn)  |  ❌  | ❌  | ✅  |
| [Keyphrase Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb) (textblob/nltk/sklearn)   |  ❌  | ❌  | ✅  |
As noted above, end-to-end question-answering and information extraction in **ktrain** can be used with either TensorFlow (using `framework='tf'`) or PyTorch (using `framework='pt'`).
<!--
pip install pdoc3==0.9.2
pdoc3 --html -o docs ktrain
diff -qr docs/ktrain/ /path/to/repo/ktrain/docs
-->
### How to Cite
Please cite the [following paper](https://arxiv.org/abs/2004.10703) when using **ktrain**:
```
@article{maiya2020ktrain,
    title={ktrain: A Low-Code Library for Augmented Machine Learning},
    author={Arun S. Maiya},
    year={2020},
    eprint={2004.10703},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
    journal={arXiv preprint arXiv:2004.10703},
}
```
<!--
### Requirements
The following software/libraries should be installed:
- [Python 3.6+](https://www.python.org/) (tested on 3.6.7)
- [Keras](https://keras.io/)  (tested on 2.2.4)
- [TensorFlow](https://www.tensorflow.org/)  (tested on 1.10.1)
- [scikit-learn](https://scikit-learn.org/stable/) (tested on 0.20.0)
- [matplotlib](https://matplotlib.org/) (tested on 3.0.0)
- [pandas](https://pandas.pydata.org/) (tested on 0.24.2)
- [keras_bert](https://github.com/CyberZHG/keras-bert/tree/master/keras_bert)
- [fastprogress](https://github.com/fastai/fastprogress)

%package -n python3-ktrain
Summary:	ktrain is a wrapper for TensorFlow Keras that makes deep learning and AI more accessible and easier to apply
Provides:	python-ktrain
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-ktrain
### Overview
**ktrain** is a lightweight wrapper for the deep learning library [TensorFlow Keras](https://www.tensorflow.org/guide/keras/overview) (and other libraries) to help build, train, and deploy neural networks and other machine learning models.  Inspired by ML framework extensions like *fastai* and *ludwig*, **ktrain** is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, **ktrain** allows you to easily and quickly:
- employ fast, accurate, and easy-to-use pre-canned models for  `text`, `vision`, `graph`, and `tabular` data:
  - `text` data:
     - **Text Classification**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), [NBSVM](https://www.aclweb.org/anthology/P12-2018), [fastText](https://arxiv.org/abs/1607.01759), and other models <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)]</sup></sub>
     - **Text Regression**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), Embedding-based linear text regression, [fastText](https://arxiv.org/abs/1607.01759), and other models <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_regression_example.ipynb)]</sup></sub>
     - **Sequence Labeling (NER)**:  Bidirectional LSTM with optional [CRF layer](https://arxiv.org/abs/1603.01360) and various embedding schemes such as pretrained [BERT](https://huggingface.co/transformers/pretrained_models.html) and [fasttext](https://fasttext.cc/docs/en/crawl-vectors.html) word embeddings and character embeddings <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb)]</sup></sub>
     - **Ready-to-Use NER models for English, Chinese, and Russian** with no training required <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/shallownlp-examples.ipynb)]</sup></sub>
     - **Sentence Pair Classification**  for tasks like paraphrase detection <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/MRPC-BERT.ipynb)]</sup></sub>
     - **Unsupervised Topic Modeling** with [LDA](http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf)  <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-topic_modeling.ipynb)]</sup></sub>
     - **Document Similarity with One-Class Learning**:  given some documents of interest, find and score new documents that are thematically similar to them using [One-Class Text Classification](https://en.wikipedia.org/wiki/One-class_classification) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-document_similarity_scorer.ipynb)]</sup></sub>
     - **Document Recommendation Engines and Semantic Searches**:  given a text snippet from a sample document, recommend documents that are semantically-related from a larger corpus  <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-recommendation_engine.ipynb)]</sup></sub>
     - **Text Summarization**:  summarize long documents - no training required <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization.ipynb)]</sup></sub>
     - **End-to-End Question-Answering**:  ask a large text corpus questions and receive exact answers <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)]</sup></sub>
     - **Easy-to-Use Built-In Search Engine**:  perform keyword searches on large collections of documents <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)]</sup></sub>
     - **Zero-Shot Learning**:  classify documents into user-provided topics **without** training examples <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb)]</sup></sub>
     - **Language Translation**:  translate text from one language to another <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb)]</sup></sub>
     - **Text Extraction**: Extract text from PDFs, Word documents, etc. <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_extraction_example.ipynb)]</sup></sub>
     - **Speech Transcription**: Extract text from audio files <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb)]</sup></sub>
     - **Universal Information Extraction**:  extract any kind of information from documents by simply phrasing it in the form of a question <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb)]</sup></sub>
     - **Keyphrase Extraction**:  extract keywords from documents <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb)]</sup></sub>
     - **Generative AI with GPT**: Provide instructions to a lightweight ChatGPT-like model running on your own own machine to solve various tasks. Model was fine-tuned on the [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) instruction dataset ([CC By NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en_GB)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/generative_ai_example.ipynb)]</sup>
  - `vision` data:
    - **image classification** (e.g., [ResNet](https://arxiv.org/abs/1512.03385), [Wide ResNet](https://arxiv.org/abs/1605.07146), [Inception](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf)) <sub><sup>[[example notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)]</sup></sub>
    - **image regression** for predicting numerical targets from photos (e.g., age prediction) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/vision/utk_faces_age_prediction-resnet50.ipynb)]</sup></sub>
    - **image captioning** with a pretrained model <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb)]</sup></sub>
    - **object detection** with a pretrained model <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb)]</sup></sub>
  - `graph` data:
    - **node classification** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/pubmed_node_classification-GraphSAGE.ipynb)]</sup></sub>
    - **link prediction** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/cora_link_prediction-GraphSAGE.ipynb)]</sup></sub>
  - `tabular` data:
    - **tabular classification** (e.g., Titanic survival prediction) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)]</sup></sub>
    - **tabular regression** (e.g., predicting house prices) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/tabular/HousePricePrediction-MLP.ipynb)]</sup></sub>
    - **causal inference** using meta-learners <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/tabular/causal_inference_example.ipynb)]</sup></sub>
- estimate an optimal learning rate for your model given your data using a Learning Rate Finder
- utilize learning rate schedules such as the [triangular policy](https://arxiv.org/abs/1506.01186), the [1cycle policy](https://arxiv.org/abs/1803.09820), and [SGDR](https://arxiv.org/abs/1608.03983) to effectively minimize loss and improve generalization
- build text classifiers for any language (e.g., [Arabic Sentiment Analysis with BERT](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ArabicHotelReviews-AraBERT.ipynb), [Chinese Sentiment Analysis with NBSVM](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ChineseHotelReviews-nbsvm.ipynb))
- easily train NER models for any language (e.g., [Dutch NER](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb) )
- load and preprocess text and image data from a variety of formats
- inspect data points that were misclassified and [provide explanations](https://eli5.readthedocs.io/en/latest/) to help improve your model
- leverage a simple prediction API for saving and deploying both models and data-preprocessing steps to make predictions on new raw data
- built-in support for exporting models to [ONNX](https://onnx.ai/) and  [TensorFlow Lite](https://www.tensorflow.org/lite) (see [example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/ktrain-ONNX-TFLite-examples.ipynb) for more information)
### Tutorials
Please see the following tutorial notebooks for a guide on how to use **ktrain** on your projects:
* Tutorial 1:  [Introduction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb)
* Tutorial 2:  [Tuning Learning Rates](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-02-tuning-learning-rates.ipynb)
* Tutorial 3: [Image Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-03-image-classification.ipynb)
* Tutorial 4: [Text Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-04-text-classification.ipynb)
* Tutorial 5: [Learning from Unlabeled Text Data](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb)
* Tutorial 6: [Text Sequence Tagging](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-06-sequence-tagging.ipynb) for Named Entity Recognition
* Tutorial 7: [Graph Node Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-07-graph-node_classification.ipynb) with Graph Neural Networks
* Tutorial 8: [Tabular Classification and Regression](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)
* Tutorial A1: [Additional tricks](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A1-additional-tricks.ipynb), which covers topics such as previewing data augmentation schemes, inspecting intermediate output of Keras models for debugging, setting global weight decay, and use of built-in and custom callbacks.
* Tutorial A2: [Explaining Predictions and Misclassifications](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A2-explaining-predictions.ipynb)
* Tutorial A3: [Text Classification with Hugging Face Transformers](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/tutorials/tutorial-A3-hugging_face_transformers.ipynb)
* Tutorial A4: [Using Custom Data Formats and Models: Text Regression with Extra Regressors](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A4-customdata-text_regression_with_extra_regressors.ipynb)
Some blog tutorials and other guides about **ktrain** are shown below:
> [**ktrain: A Lightweight Wrapper for Keras to Help Train Neural Networks**](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c)
> [**BERT Text Classification in 3 Lines of Code**](https://towardsdatascience.com/bert-text-classification-in-3-lines-of-code-using-keras-264db7e7a358)
> [**Text Classification with Hugging Face Transformers in  TensorFlow 2 (Without Tears)**](https://medium.com/@asmaiya/text-classification-with-hugging-face-transformers-in-tensorflow-2-without-tears-ee50e4f3e7ed)
> [**Build an Open-Domain Question-Answering System With BERT in 3 Lines of Code**](https://towardsdatascience.com/build-an-open-domain-question-answering-system-with-bert-in-3-lines-of-code-da0131bc516b)
> [**Finetuning BERT using ktrain for Disaster Tweets Classification**](https://medium.com/analytics-vidhya/finetuning-bert-using-ktrain-for-disaster-tweets-classification-18f64a50910b) by Hamiz Ahmed
> [**Indonesian NLP Examples with ktrain**](https://github.com/ilos-vigil/ktrain-assessment-study) by Sandy Khosasi
### Examples
Using **ktrain** on **Google Colab**?  See these Colab examples:
-  **text classification:** [a simple demo of Multiclass Text Classification with BERT](https://colab.research.google.com/drive/1AH3fkKiEqBpVpO5ua00scp7zcHs5IDLK)
-  **text classification:** [a simple demo of Multiclass Text Classification with Hugging Face Transformers](https://colab.research.google.com/drive/1YxcceZxsNlvK35pRURgbwvkgejXwFxUt)
- **sequence-tagging (NER):** [NER example using `transformer` word embeddings](https://colab.research.google.com/drive/1whrnmM7ElqbaEhXf760eiOMiYk5MNO-Z?usp=sharing)
- **question-answering:** [End-to-End Question-Answering](https://colab.research.google.com/drive/1tcsEQ7igx7lw_R0Pfpmsg9Wf3DEXyOvk?usp=sharing) using the 20newsgroups dataset.
-  **image classification:** [image classification with Cats vs. Dogs](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)
Tasks such as text classification and image classification can be accomplished easily with
only a few lines of code.
#### Example: Text Classification of [IMDb Movie Reviews](https://ai.stanford.edu/~amaas/data/sentiment/) Using [BERT](https://arxiv.org/pdf/1810.04805.pdf) <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import text as txt
# load data
(x_train, y_train), (x_test, y_test), preproc = txt.texts_from_folder('data/aclImdb', maxlen=500,
                                                                     preprocess_mode='bert',
                                                                     train_test_names=['train', 'test'],
                                                                     classes=['pos', 'neg'])
# load model
model = txt.text_classifier('bert', (x_train, y_train), preproc=preproc)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model,
                             train_data=(x_train, y_train),
                             val_data=(x_test, y_test),
                             batch_size=6)
# find good learning rate
learner.lr_find()             # briefly simulate training to find good learning rate
learner.lr_plot()             # visually identify best learning rate
# train using 1cycle learning rate schedule for 3 epochs
learner.fit_onecycle(2e-5, 3)
```
#### Example: Classifying Images of [Dogs and Cats](https://www.kaggle.com/c/dogs-vs-cats) Using a Pretrained [ResNet50](https://arxiv.org/abs/1512.03385) model <sub><sup>[[see notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)]</sup></sub>
```python
import ktrain
from ktrain import vision as vis
# load data
(train_data, val_data, preproc) = vis.images_from_folder(
                                              datadir='data/dogscats',
                                              data_aug = vis.get_data_aug(horizontal_flip=True),
                                              train_test_names=['train', 'valid'],
                                              target_size=(224,224), color_mode='rgb')
# load model
model = vis.image_classifier('pretrained_resnet50', train_data, val_data, freeze_layers=80)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model=model, train_data=train_data, val_data=val_data,
                             workers=8, use_multiprocessing=False, batch_size=64)
# find good learning rate
learner.lr_find()             # briefly simulate training to find good learning rate
learner.lr_plot()             # visually identify best learning rate
# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(1e-4, checkpoint_folder='/tmp/saved_weights')
```
#### Example: Sequence Labeling for [Named Entity Recognition](https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/version/2) using a randomly initialized [Bidirectional LSTM CRF](https://arxiv.org/abs/1603.01360) model <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/CoNLL2003-BiLSTM_CRF.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import text as txt
# load data
(trn, val, preproc) = txt.entities_from_txt('data/ner_dataset.csv',
                                            sentence_column='Sentence #',
                                            word_column='Word',
                                            tag_column='Tag',
                                            data_format='gmb',
                                            use_char=True) # enable character embeddings
# load model
model = txt.sequence_tagger('bilstm-crf', preproc)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val)
# conventional training for 1 epoch using a learning rate of 0.001 (Keras default for Adam optmizer)
learner.fit(1e-3, 1)
```
#### Example: Node Classification on [Cora Citation Graph](https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz) using a [GraphSAGE](https://arxiv.org/abs/1706.02216) model <sub><sup>[[see notbook](https://github.com/amaiya/ktrain/blob/master/examples/graphs/cora_node_classification-GraphSAGE.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import graph as gr
# load data with supervision ratio of 10%
(trn, val, preproc)  = gr.graph_nodes_from_csv(
                                               'cora.content', # node attributes/labels
                                               'cora.cites',   # edge list
                                               sample_size=20,
                                               holdout_pct=None,
                                               holdout_for_inductive=False,
                                              train_pct=0.1, sep='\t')
# load model
model=gr.graph_node_classifier('graphsage', trn)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=64)
# find good learning rate
learner.lr_find(max_epochs=100) # briefly simulate training to find good learning rate
learner.lr_plot()               # visually identify best learning rate
# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(0.01, checkpoint_folder='/tmp/saved_weights')
```
#### Example: Text Classification with [Hugging Face Transformers](https://github.com/huggingface/transformers) on [20 Newsgroups Dataset](https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html) Using [DistilBERT](https://arxiv.org/abs/1910.01108) <sub><sup>[[see notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A3-hugging_face_transformers.ipynb)]</sup></sub>
```python
# load text data
categories = ['alt.atheism', 'soc.religion.christian','comp.graphics', 'sci.med']
from sklearn.datasets import fetch_20newsgroups
train_b = fetch_20newsgroups(subset='train', categories=categories, shuffle=True)
test_b = fetch_20newsgroups(subset='test',categories=categories, shuffle=True)
(x_train, y_train) = (train_b.data, train_b.target)
(x_test, y_test) = (test_b.data, test_b.target)
# build, train, and validate model (Transformer is wrapper around transformers library)
import ktrain
from ktrain import text
MODEL_NAME = 'distilbert-base-uncased'
t = text.Transformer(MODEL_NAME, maxlen=500, class_names=train_b.target_names)
trn = t.preprocess_train(x_train, y_train)
val = t.preprocess_test(x_test, y_test)
model = t.get_classifier()
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6)
learner.fit_onecycle(5e-5, 4)
learner.validate(class_names=t.get_classes()) # class_names must be string values
# Output from learner.validate()
#                        precision    recall  f1-score   support
#
#           alt.atheism       0.92      0.93      0.93       319
#         comp.graphics       0.97      0.97      0.97       389
#               sci.med       0.97      0.95      0.96       396
#soc.religion.christian       0.96      0.96      0.96       398
#
#              accuracy                           0.96      1502
#             macro avg       0.95      0.96      0.95      1502
#          weighted avg       0.96      0.96      0.96      1502
```
<!--
#### Example: NER With [BioBERT](https://arxiv.org/abs/1901.08746) Embeddings
```python
# NER with BioBERT embeddings
import ktrain
from ktrain import text as txt
x_train= [['IL-2', 'responsiveness', 'requires', 'three', 'distinct', 'elements', 'within', 'the', 'enhancer', '.'], ...]
y_train=[['B-protein', 'O', 'O', 'O', 'O', 'B-DNA', 'O', 'O', 'B-DNA', 'O'], ...]
(trn, val, preproc) = txt.entities_from_array(x_train, y_train)
model = txt.sequence_tagger('bilstm-bert', preproc, bert_model='monologg/biobert_v1.1_pubmed')
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=128)
learner.fit(0.01, 1, cycle_len=5)
```
-->
#### Example: Tabular Classification for [Titanic Survival Prediction](https://www.kaggle.com/c/titanic) Using an MLP  <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/tabular/tabular_classification_and_regression_example.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import tabular
import pandas as pd
train_df = pd.read_csv('train.csv', index_col=0)
train_df = train_df.drop(['Name', 'Ticket', 'Cabin'], 1)
trn, val, preproc = tabular.tabular_from_df(train_df, label_columns=['Survived'], random_state=42)
learner = ktrain.get_learner(tabular.tabular_classifier('mlp', trn), train_data=trn, val_data=val)
learner.lr_find(show_plot=True, max_epochs=5) # estimate learning rate
learner.fit_onecycle(5e-3, 10)
# evaluate held-out labeled test set
tst = preproc.preprocess_test(pd.read_csv('heldout.csv', index_col=0))
learner.evaluate(tst, class_names=preproc.get_classes())
```
#### Additional examples can be found [here](https://github.com/amaiya/ktrain/tree/master/examples).
### Installation
1. Make sure pip is up-to-date with: `pip install -U pip`
2. [Install TensorFlow 2](https://www.tensorflow.org/install) if it is not already installed (e.g., `pip install tensorflow`)
3. Install *ktrain*: `pip install ktrain`
The above should be all you need on Linux systems and cloud computing environments like Google Colab and AWS EC2.  If you are using **ktrain** on a **Windows computer**, you can follow these
[more detailed instructions](https://github.com/amaiya/ktrain/blob/master/FAQ.md#how-do-i-install-ktrain-on-a-windows-machine) that include some extra steps.
**Supported TensorFlow Versions**:  *ktrain* should currently support any version of TensorFlow at or above to v2.3: i.e., `pip install tensorflow>=2.3`.  However, if using `tensorflow>=2.11`, then you must only use legacy optimizers such as `tf.keras.optimizers.legacy.Adam`.  The newer `tf.keras.optimizers.Optimizer` base class is not supported at this time.  For instance, when using TensorFlow 2.11 and above, please use `tf.keras.optimzers.legacy.Adam()` instead of the string `"adam"` in `model.compile`. **ktrain** does this automatically when using out-of-the-box models (e.g., models from the `transformers` library).
#### Additional Notes About Installation
- Some optional, extra libraries used for some operations can be installed as needed. (Notice that **ktrain** is using forked versions of the `eli5` and `stellargraph` libraries in order to support TensorFlow2.)
```python
# for graph module:
pip install https://github.com/amaiya/stellargraph/archive/refs/heads/no_tf_dep_082.zip
# for text.TextPredictor.explain and vision.ImagePredictor.explain:
pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip
# for tabular.TabularPredictor.explain:
pip install shap
# for text.zsl (ZeroShotClassifier), text.summarization, text.translation, text.speech:
pip install torch
# for text.speech:
pip install librosa
# for tabular.causal_inference_model:
pip install causalnlp
# for text.summarization.core.LexRankSummarizer:
pip install sumy
# for text.kw.KeywordExtractor
pip install textblob
```
- **ktrain** purposely pins to a lower version of **transformers** to include support for older versions of TensorFlow.  If you need a newer version of `transformers`, it is usually safe for you to upgrade `transformers`, as long as you do it **after** installing **ktrain**.
- As of v0.30.x, TensorFlow installation is optional and only required if training neural networks.  Although **ktrain** uses TensorFlow for neural network training, it also includes a variety of useful pretrained PyTorch models and sklearn models, which
can be used out-of-the-box **without** having TensorFlow installed, as summarized in this table:
| Feature  | TensorFlow |  PyTorch | Sklearn
| --- | :-: | :-: | :-: |
| [training](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c) any neural network (e.g., text or image classification)  |  ✅  | ❌  | ❌  |
| [End-to-End Question-Answering](https://nbviewer.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb) (pretrained)             |  ✅  | ✅  | ❌  |
| [QA-Based Information Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb) (pretrained)      |  ✅  | ✅  | ❌  |
| [Zero-Shot Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb) (pretrained)   |  ❌  | ✅  | ❌  |
| [Language Translation](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb) (pretrained)      |  ❌  | ✅  | ❌  |
| [Summarization](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization_with_bart.ipynb) (pretrained)             |  ❌  | ✅  | ❌  |
| [Speech Transcription](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Image Captioning](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Object Detection](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Topic Modeling](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb) (sklearn)  |  ❌  | ❌  | ✅  |
| [Keyphrase Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb) (textblob/nltk/sklearn)   |  ❌  | ❌  | ✅  |
As noted above, end-to-end question-answering and information extraction in **ktrain** can be used with either TensorFlow (using `framework='tf'`) or PyTorch (using `framework='pt'`).
<!--
pip install pdoc3==0.9.2
pdoc3 --html -o docs ktrain
diff -qr docs/ktrain/ /path/to/repo/ktrain/docs
-->
### How to Cite
Please cite the [following paper](https://arxiv.org/abs/2004.10703) when using **ktrain**:
```
@article{maiya2020ktrain,
    title={ktrain: A Low-Code Library for Augmented Machine Learning},
    author={Arun S. Maiya},
    year={2020},
    eprint={2004.10703},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
    journal={arXiv preprint arXiv:2004.10703},
}
```
<!--
### Requirements
The following software/libraries should be installed:
- [Python 3.6+](https://www.python.org/) (tested on 3.6.7)
- [Keras](https://keras.io/)  (tested on 2.2.4)
- [TensorFlow](https://www.tensorflow.org/)  (tested on 1.10.1)
- [scikit-learn](https://scikit-learn.org/stable/) (tested on 0.20.0)
- [matplotlib](https://matplotlib.org/) (tested on 3.0.0)
- [pandas](https://pandas.pydata.org/) (tested on 0.24.2)
- [keras_bert](https://github.com/CyberZHG/keras-bert/tree/master/keras_bert)
- [fastprogress](https://github.com/fastai/fastprogress)

%package help
Summary:	Development documents and examples for ktrain
Provides:	python3-ktrain-doc
%description help
### Overview
**ktrain** is a lightweight wrapper for the deep learning library [TensorFlow Keras](https://www.tensorflow.org/guide/keras/overview) (and other libraries) to help build, train, and deploy neural networks and other machine learning models.  Inspired by ML framework extensions like *fastai* and *ludwig*, **ktrain** is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, **ktrain** allows you to easily and quickly:
- employ fast, accurate, and easy-to-use pre-canned models for  `text`, `vision`, `graph`, and `tabular` data:
  - `text` data:
     - **Text Classification**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), [NBSVM](https://www.aclweb.org/anthology/P12-2018), [fastText](https://arxiv.org/abs/1607.01759), and other models <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)]</sup></sub>
     - **Text Regression**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), Embedding-based linear text regression, [fastText](https://arxiv.org/abs/1607.01759), and other models <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_regression_example.ipynb)]</sup></sub>
     - **Sequence Labeling (NER)**:  Bidirectional LSTM with optional [CRF layer](https://arxiv.org/abs/1603.01360) and various embedding schemes such as pretrained [BERT](https://huggingface.co/transformers/pretrained_models.html) and [fasttext](https://fasttext.cc/docs/en/crawl-vectors.html) word embeddings and character embeddings <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb)]</sup></sub>
     - **Ready-to-Use NER models for English, Chinese, and Russian** with no training required <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/shallownlp-examples.ipynb)]</sup></sub>
     - **Sentence Pair Classification**  for tasks like paraphrase detection <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/MRPC-BERT.ipynb)]</sup></sub>
     - **Unsupervised Topic Modeling** with [LDA](http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf)  <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-topic_modeling.ipynb)]</sup></sub>
     - **Document Similarity with One-Class Learning**:  given some documents of interest, find and score new documents that are thematically similar to them using [One-Class Text Classification](https://en.wikipedia.org/wiki/One-class_classification) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-document_similarity_scorer.ipynb)]</sup></sub>
     - **Document Recommendation Engines and Semantic Searches**:  given a text snippet from a sample document, recommend documents that are semantically-related from a larger corpus  <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-recommendation_engine.ipynb)]</sup></sub>
     - **Text Summarization**:  summarize long documents - no training required <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization.ipynb)]</sup></sub>
     - **End-to-End Question-Answering**:  ask a large text corpus questions and receive exact answers <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)]</sup></sub>
     - **Easy-to-Use Built-In Search Engine**:  perform keyword searches on large collections of documents <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)]</sup></sub>
     - **Zero-Shot Learning**:  classify documents into user-provided topics **without** training examples <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb)]</sup></sub>
     - **Language Translation**:  translate text from one language to another <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb)]</sup></sub>
     - **Text Extraction**: Extract text from PDFs, Word documents, etc. <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_extraction_example.ipynb)]</sup></sub>
     - **Speech Transcription**: Extract text from audio files <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb)]</sup></sub>
     - **Universal Information Extraction**:  extract any kind of information from documents by simply phrasing it in the form of a question <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb)]</sup></sub>
     - **Keyphrase Extraction**:  extract keywords from documents <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb)]</sup></sub>
     - **Generative AI with GPT**: Provide instructions to a lightweight ChatGPT-like model running on your own own machine to solve various tasks. Model was fine-tuned on the [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) instruction dataset ([CC By NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en_GB)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/generative_ai_example.ipynb)]</sup>
  - `vision` data:
    - **image classification** (e.g., [ResNet](https://arxiv.org/abs/1512.03385), [Wide ResNet](https://arxiv.org/abs/1605.07146), [Inception](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf)) <sub><sup>[[example notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)]</sup></sub>
    - **image regression** for predicting numerical targets from photos (e.g., age prediction) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/vision/utk_faces_age_prediction-resnet50.ipynb)]</sup></sub>
    - **image captioning** with a pretrained model <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb)]</sup></sub>
    - **object detection** with a pretrained model <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb)]</sup></sub>
  - `graph` data:
    - **node classification** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/pubmed_node_classification-GraphSAGE.ipynb)]</sup></sub>
    - **link prediction** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/cora_link_prediction-GraphSAGE.ipynb)]</sup></sub>
  - `tabular` data:
    - **tabular classification** (e.g., Titanic survival prediction) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)]</sup></sub>
    - **tabular regression** (e.g., predicting house prices) <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/tabular/HousePricePrediction-MLP.ipynb)]</sup></sub>
    - **causal inference** using meta-learners <sub><sup>[[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/tabular/causal_inference_example.ipynb)]</sup></sub>
- estimate an optimal learning rate for your model given your data using a Learning Rate Finder
- utilize learning rate schedules such as the [triangular policy](https://arxiv.org/abs/1506.01186), the [1cycle policy](https://arxiv.org/abs/1803.09820), and [SGDR](https://arxiv.org/abs/1608.03983) to effectively minimize loss and improve generalization
- build text classifiers for any language (e.g., [Arabic Sentiment Analysis with BERT](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ArabicHotelReviews-AraBERT.ipynb), [Chinese Sentiment Analysis with NBSVM](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ChineseHotelReviews-nbsvm.ipynb))
- easily train NER models for any language (e.g., [Dutch NER](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb) )
- load and preprocess text and image data from a variety of formats
- inspect data points that were misclassified and [provide explanations](https://eli5.readthedocs.io/en/latest/) to help improve your model
- leverage a simple prediction API for saving and deploying both models and data-preprocessing steps to make predictions on new raw data
- built-in support for exporting models to [ONNX](https://onnx.ai/) and  [TensorFlow Lite](https://www.tensorflow.org/lite) (see [example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/ktrain-ONNX-TFLite-examples.ipynb) for more information)
### Tutorials
Please see the following tutorial notebooks for a guide on how to use **ktrain** on your projects:
* Tutorial 1:  [Introduction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb)
* Tutorial 2:  [Tuning Learning Rates](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-02-tuning-learning-rates.ipynb)
* Tutorial 3: [Image Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-03-image-classification.ipynb)
* Tutorial 4: [Text Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-04-text-classification.ipynb)
* Tutorial 5: [Learning from Unlabeled Text Data](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb)
* Tutorial 6: [Text Sequence Tagging](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-06-sequence-tagging.ipynb) for Named Entity Recognition
* Tutorial 7: [Graph Node Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-07-graph-node_classification.ipynb) with Graph Neural Networks
* Tutorial 8: [Tabular Classification and Regression](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)
* Tutorial A1: [Additional tricks](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A1-additional-tricks.ipynb), which covers topics such as previewing data augmentation schemes, inspecting intermediate output of Keras models for debugging, setting global weight decay, and use of built-in and custom callbacks.
* Tutorial A2: [Explaining Predictions and Misclassifications](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A2-explaining-predictions.ipynb)
* Tutorial A3: [Text Classification with Hugging Face Transformers](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/tutorials/tutorial-A3-hugging_face_transformers.ipynb)
* Tutorial A4: [Using Custom Data Formats and Models: Text Regression with Extra Regressors](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A4-customdata-text_regression_with_extra_regressors.ipynb)
Some blog tutorials and other guides about **ktrain** are shown below:
> [**ktrain: A Lightweight Wrapper for Keras to Help Train Neural Networks**](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c)
> [**BERT Text Classification in 3 Lines of Code**](https://towardsdatascience.com/bert-text-classification-in-3-lines-of-code-using-keras-264db7e7a358)
> [**Text Classification with Hugging Face Transformers in  TensorFlow 2 (Without Tears)**](https://medium.com/@asmaiya/text-classification-with-hugging-face-transformers-in-tensorflow-2-without-tears-ee50e4f3e7ed)
> [**Build an Open-Domain Question-Answering System With BERT in 3 Lines of Code**](https://towardsdatascience.com/build-an-open-domain-question-answering-system-with-bert-in-3-lines-of-code-da0131bc516b)
> [**Finetuning BERT using ktrain for Disaster Tweets Classification**](https://medium.com/analytics-vidhya/finetuning-bert-using-ktrain-for-disaster-tweets-classification-18f64a50910b) by Hamiz Ahmed
> [**Indonesian NLP Examples with ktrain**](https://github.com/ilos-vigil/ktrain-assessment-study) by Sandy Khosasi
### Examples
Using **ktrain** on **Google Colab**?  See these Colab examples:
-  **text classification:** [a simple demo of Multiclass Text Classification with BERT](https://colab.research.google.com/drive/1AH3fkKiEqBpVpO5ua00scp7zcHs5IDLK)
-  **text classification:** [a simple demo of Multiclass Text Classification with Hugging Face Transformers](https://colab.research.google.com/drive/1YxcceZxsNlvK35pRURgbwvkgejXwFxUt)
- **sequence-tagging (NER):** [NER example using `transformer` word embeddings](https://colab.research.google.com/drive/1whrnmM7ElqbaEhXf760eiOMiYk5MNO-Z?usp=sharing)
- **question-answering:** [End-to-End Question-Answering](https://colab.research.google.com/drive/1tcsEQ7igx7lw_R0Pfpmsg9Wf3DEXyOvk?usp=sharing) using the 20newsgroups dataset.
-  **image classification:** [image classification with Cats vs. Dogs](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)
Tasks such as text classification and image classification can be accomplished easily with
only a few lines of code.
#### Example: Text Classification of [IMDb Movie Reviews](https://ai.stanford.edu/~amaas/data/sentiment/) Using [BERT](https://arxiv.org/pdf/1810.04805.pdf) <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import text as txt
# load data
(x_train, y_train), (x_test, y_test), preproc = txt.texts_from_folder('data/aclImdb', maxlen=500,
                                                                     preprocess_mode='bert',
                                                                     train_test_names=['train', 'test'],
                                                                     classes=['pos', 'neg'])
# load model
model = txt.text_classifier('bert', (x_train, y_train), preproc=preproc)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model,
                             train_data=(x_train, y_train),
                             val_data=(x_test, y_test),
                             batch_size=6)
# find good learning rate
learner.lr_find()             # briefly simulate training to find good learning rate
learner.lr_plot()             # visually identify best learning rate
# train using 1cycle learning rate schedule for 3 epochs
learner.fit_onecycle(2e-5, 3)
```
#### Example: Classifying Images of [Dogs and Cats](https://www.kaggle.com/c/dogs-vs-cats) Using a Pretrained [ResNet50](https://arxiv.org/abs/1512.03385) model <sub><sup>[[see notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)]</sup></sub>
```python
import ktrain
from ktrain import vision as vis
# load data
(train_data, val_data, preproc) = vis.images_from_folder(
                                              datadir='data/dogscats',
                                              data_aug = vis.get_data_aug(horizontal_flip=True),
                                              train_test_names=['train', 'valid'],
                                              target_size=(224,224), color_mode='rgb')
# load model
model = vis.image_classifier('pretrained_resnet50', train_data, val_data, freeze_layers=80)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model=model, train_data=train_data, val_data=val_data,
                             workers=8, use_multiprocessing=False, batch_size=64)
# find good learning rate
learner.lr_find()             # briefly simulate training to find good learning rate
learner.lr_plot()             # visually identify best learning rate
# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(1e-4, checkpoint_folder='/tmp/saved_weights')
```
#### Example: Sequence Labeling for [Named Entity Recognition](https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/version/2) using a randomly initialized [Bidirectional LSTM CRF](https://arxiv.org/abs/1603.01360) model <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/CoNLL2003-BiLSTM_CRF.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import text as txt
# load data
(trn, val, preproc) = txt.entities_from_txt('data/ner_dataset.csv',
                                            sentence_column='Sentence #',
                                            word_column='Word',
                                            tag_column='Tag',
                                            data_format='gmb',
                                            use_char=True) # enable character embeddings
# load model
model = txt.sequence_tagger('bilstm-crf', preproc)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val)
# conventional training for 1 epoch using a learning rate of 0.001 (Keras default for Adam optmizer)
learner.fit(1e-3, 1)
```
#### Example: Node Classification on [Cora Citation Graph](https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz) using a [GraphSAGE](https://arxiv.org/abs/1706.02216) model <sub><sup>[[see notbook](https://github.com/amaiya/ktrain/blob/master/examples/graphs/cora_node_classification-GraphSAGE.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import graph as gr
# load data with supervision ratio of 10%
(trn, val, preproc)  = gr.graph_nodes_from_csv(
                                               'cora.content', # node attributes/labels
                                               'cora.cites',   # edge list
                                               sample_size=20,
                                               holdout_pct=None,
                                               holdout_for_inductive=False,
                                              train_pct=0.1, sep='\t')
# load model
model=gr.graph_node_classifier('graphsage', trn)
# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=64)
# find good learning rate
learner.lr_find(max_epochs=100) # briefly simulate training to find good learning rate
learner.lr_plot()               # visually identify best learning rate
# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(0.01, checkpoint_folder='/tmp/saved_weights')
```
#### Example: Text Classification with [Hugging Face Transformers](https://github.com/huggingface/transformers) on [20 Newsgroups Dataset](https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html) Using [DistilBERT](https://arxiv.org/abs/1910.01108) <sub><sup>[[see notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A3-hugging_face_transformers.ipynb)]</sup></sub>
```python
# load text data
categories = ['alt.atheism', 'soc.religion.christian','comp.graphics', 'sci.med']
from sklearn.datasets import fetch_20newsgroups
train_b = fetch_20newsgroups(subset='train', categories=categories, shuffle=True)
test_b = fetch_20newsgroups(subset='test',categories=categories, shuffle=True)
(x_train, y_train) = (train_b.data, train_b.target)
(x_test, y_test) = (test_b.data, test_b.target)
# build, train, and validate model (Transformer is wrapper around transformers library)
import ktrain
from ktrain import text
MODEL_NAME = 'distilbert-base-uncased'
t = text.Transformer(MODEL_NAME, maxlen=500, class_names=train_b.target_names)
trn = t.preprocess_train(x_train, y_train)
val = t.preprocess_test(x_test, y_test)
model = t.get_classifier()
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6)
learner.fit_onecycle(5e-5, 4)
learner.validate(class_names=t.get_classes()) # class_names must be string values
# Output from learner.validate()
#                        precision    recall  f1-score   support
#
#           alt.atheism       0.92      0.93      0.93       319
#         comp.graphics       0.97      0.97      0.97       389
#               sci.med       0.97      0.95      0.96       396
#soc.religion.christian       0.96      0.96      0.96       398
#
#              accuracy                           0.96      1502
#             macro avg       0.95      0.96      0.95      1502
#          weighted avg       0.96      0.96      0.96      1502
```
<!--
#### Example: NER With [BioBERT](https://arxiv.org/abs/1901.08746) Embeddings
```python
# NER with BioBERT embeddings
import ktrain
from ktrain import text as txt
x_train= [['IL-2', 'responsiveness', 'requires', 'three', 'distinct', 'elements', 'within', 'the', 'enhancer', '.'], ...]
y_train=[['B-protein', 'O', 'O', 'O', 'O', 'B-DNA', 'O', 'O', 'B-DNA', 'O'], ...]
(trn, val, preproc) = txt.entities_from_array(x_train, y_train)
model = txt.sequence_tagger('bilstm-bert', preproc, bert_model='monologg/biobert_v1.1_pubmed')
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=128)
learner.fit(0.01, 1, cycle_len=5)
```
-->
#### Example: Tabular Classification for [Titanic Survival Prediction](https://www.kaggle.com/c/titanic) Using an MLP  <sub><sup>[[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/tabular/tabular_classification_and_regression_example.ipynb)]</sup></sub>
```python
import ktrain
from ktrain import tabular
import pandas as pd
train_df = pd.read_csv('train.csv', index_col=0)
train_df = train_df.drop(['Name', 'Ticket', 'Cabin'], 1)
trn, val, preproc = tabular.tabular_from_df(train_df, label_columns=['Survived'], random_state=42)
learner = ktrain.get_learner(tabular.tabular_classifier('mlp', trn), train_data=trn, val_data=val)
learner.lr_find(show_plot=True, max_epochs=5) # estimate learning rate
learner.fit_onecycle(5e-3, 10)
# evaluate held-out labeled test set
tst = preproc.preprocess_test(pd.read_csv('heldout.csv', index_col=0))
learner.evaluate(tst, class_names=preproc.get_classes())
```
#### Additional examples can be found [here](https://github.com/amaiya/ktrain/tree/master/examples).
### Installation
1. Make sure pip is up-to-date with: `pip install -U pip`
2. [Install TensorFlow 2](https://www.tensorflow.org/install) if it is not already installed (e.g., `pip install tensorflow`)
3. Install *ktrain*: `pip install ktrain`
The above should be all you need on Linux systems and cloud computing environments like Google Colab and AWS EC2.  If you are using **ktrain** on a **Windows computer**, you can follow these
[more detailed instructions](https://github.com/amaiya/ktrain/blob/master/FAQ.md#how-do-i-install-ktrain-on-a-windows-machine) that include some extra steps.
**Supported TensorFlow Versions**:  *ktrain* should currently support any version of TensorFlow at or above to v2.3: i.e., `pip install tensorflow>=2.3`.  However, if using `tensorflow>=2.11`, then you must only use legacy optimizers such as `tf.keras.optimizers.legacy.Adam`.  The newer `tf.keras.optimizers.Optimizer` base class is not supported at this time.  For instance, when using TensorFlow 2.11 and above, please use `tf.keras.optimzers.legacy.Adam()` instead of the string `"adam"` in `model.compile`. **ktrain** does this automatically when using out-of-the-box models (e.g., models from the `transformers` library).
#### Additional Notes About Installation
- Some optional, extra libraries used for some operations can be installed as needed. (Notice that **ktrain** is using forked versions of the `eli5` and `stellargraph` libraries in order to support TensorFlow2.)
```python
# for graph module:
pip install https://github.com/amaiya/stellargraph/archive/refs/heads/no_tf_dep_082.zip
# for text.TextPredictor.explain and vision.ImagePredictor.explain:
pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip
# for tabular.TabularPredictor.explain:
pip install shap
# for text.zsl (ZeroShotClassifier), text.summarization, text.translation, text.speech:
pip install torch
# for text.speech:
pip install librosa
# for tabular.causal_inference_model:
pip install causalnlp
# for text.summarization.core.LexRankSummarizer:
pip install sumy
# for text.kw.KeywordExtractor
pip install textblob
```
- **ktrain** purposely pins to a lower version of **transformers** to include support for older versions of TensorFlow.  If you need a newer version of `transformers`, it is usually safe for you to upgrade `transformers`, as long as you do it **after** installing **ktrain**.
- As of v0.30.x, TensorFlow installation is optional and only required if training neural networks.  Although **ktrain** uses TensorFlow for neural network training, it also includes a variety of useful pretrained PyTorch models and sklearn models, which
can be used out-of-the-box **without** having TensorFlow installed, as summarized in this table:
| Feature  | TensorFlow |  PyTorch | Sklearn
| --- | :-: | :-: | :-: |
| [training](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c) any neural network (e.g., text or image classification)  |  ✅  | ❌  | ❌  |
| [End-to-End Question-Answering](https://nbviewer.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb) (pretrained)             |  ✅  | ✅  | ❌  |
| [QA-Based Information Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb) (pretrained)      |  ✅  | ✅  | ❌  |
| [Zero-Shot Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb) (pretrained)   |  ❌  | ✅  | ❌  |
| [Language Translation](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb) (pretrained)      |  ❌  | ✅  | ❌  |
| [Summarization](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization_with_bart.ipynb) (pretrained)             |  ❌  | ✅  | ❌  |
| [Speech Transcription](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Image Captioning](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Object Detection](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb) (pretrained)     |  ❌  | ✅  |❌   |
| [Topic Modeling](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb) (sklearn)  |  ❌  | ❌  | ✅  |
| [Keyphrase Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb) (textblob/nltk/sklearn)   |  ❌  | ❌  | ✅  |
As noted above, end-to-end question-answering and information extraction in **ktrain** can be used with either TensorFlow (using `framework='tf'`) or PyTorch (using `framework='pt'`).
<!--
pip install pdoc3==0.9.2
pdoc3 --html -o docs ktrain
diff -qr docs/ktrain/ /path/to/repo/ktrain/docs
-->
### How to Cite
Please cite the [following paper](https://arxiv.org/abs/2004.10703) when using **ktrain**:
```
@article{maiya2020ktrain,
    title={ktrain: A Low-Code Library for Augmented Machine Learning},
    author={Arun S. Maiya},
    year={2020},
    eprint={2004.10703},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
    journal={arXiv preprint arXiv:2004.10703},
}
```
<!--
### Requirements
The following software/libraries should be installed:
- [Python 3.6+](https://www.python.org/) (tested on 3.6.7)
- [Keras](https://keras.io/)  (tested on 2.2.4)
- [TensorFlow](https://www.tensorflow.org/)  (tested on 1.10.1)
- [scikit-learn](https://scikit-learn.org/stable/) (tested on 0.20.0)
- [matplotlib](https://matplotlib.org/) (tested on 3.0.0)
- [pandas](https://pandas.pydata.org/) (tested on 0.24.2)
- [keras_bert](https://github.com/CyberZHG/keras-bert/tree/master/keras_bert)
- [fastprogress](https://github.com/fastai/fastprogress)

%prep
%autosetup -n ktrain-0.35.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ktrain -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.35.1-1
- Package Spec generated