%global _empty_manifest_terminate_build 0
Name: python-deepctr
Version: 0.9.3
Release: 1
Summary: Easy-to-use,Modular and Extendible package of deep learning based CTR(Click Through Rate) prediction models with tensorflow 1.x and 2.x .
License: Apache-2.0
URL: https://github.com/shenweichen/deepctr
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/32/e6/a0c65da46ce3c224bf5c468487a307ba074e0df223825a8a00e1474f9081/deepctr-0.9.3.tar.gz
BuildArch: noarch
Requires: python3-requests
Requires: python3-h5py
Requires: python3-h5py
Requires: python3-tensorflow
Requires: python3-tensorflow-gpu
%description
# DeepCTR
[](https://pypi.org/project/deepctr)
[](https://pypi.org/project/deepctr)
[](https://pepy.tech/project/deepctr)
[](https://pypi.org/project/deepctr)
[](https://github.com/shenweichen/deepctr/issues)
[](https://deepctr-doc.readthedocs.io/)

[](https://codecov.io/gh/shenweichen/DeepCTR)
[](https://www.codacy.com/gh/shenweichen/DeepCTR?utm_source=github.com&utm_medium=referral&utm_content=shenweichen/DeepCTR&utm_campaign=Badge_Grade)
[](./README.md#DisscussionGroup)
[](https://github.com/shenweichen/deepctr/blob/master/LICENSE)
DeepCTR is a **Easy-to-use**, **Modular** and **Extendible** package of deep-learning based CTR models along with lots of
core components layers which can be used to easily build custom models.You can use any complex model with `model.fit()`
,and `model.predict()` .
- Provide `tf.keras.Model` like interfaces for **quick experiment**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr)
- Provide `tensorflow estimator` interface for **large scale data** and **distributed training**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr-estimator-with-tfrecord)
- It is compatible with both `tf 1.x` and `tf 2.x`.
Some related projects:
- DeepMatch: https://github.com/shenweichen/DeepMatch
- DeepCTR-Torch: https://github.com/shenweichen/DeepCTR-Torch
Let's [**Get Started!**](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html)([Chinese
Introduction](https://zhuanlan.zhihu.com/p/53231955)) and [welcome to join us!](./CONTRIBUTING.md)
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| FwFM | [WWW 2018][Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](https://arxiv.org/pdf/1806.03514.pdf) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FGCNN | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ](https://arxiv.org/pdf/1904.04447) |
| Deep Session Interest Network | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| FLEN | [arxiv 2019][FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690.pdf) |
| BST | [DLP-KDD 2019][Behavior sequence transformer for e-commerce recommendation in Alibaba](https://arxiv.org/pdf/1905.06874.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| FEFM and DeepFEFM | [arxiv 2020][Field-Embedded Factorization Machines for Click-through rate prediction](https://arxiv.org/abs/2009.09931) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
| EDCN | [KDD 2021][Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf) |
## Citation
- Weichen Shen. (2017). DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR
models. https://github.com/shenweichen/deepctr.
If you find this code useful in your research, please cite it using the following BibTeX:
```bibtex
@misc{shen2017deepctr,
author = {Weichen Shen},
title = {DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR models},
year = {2017},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/shenweichen/deepctr}},
}
```
## DisscussionGroup
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions
|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [](https://github.com/shenweichen/AlgoNotes)| [](https://github.com/shenweichen/AlgoNotes)|[](https://t.zsxq.com/026UJEuzv)|
## Main contributors([welcome to join us!](./CONTRIBUTING.md))
%package -n python3-deepctr
Summary: Easy-to-use,Modular and Extendible package of deep learning based CTR(Click Through Rate) prediction models with tensorflow 1.x and 2.x .
Provides: python-deepctr
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-deepctr
# DeepCTR
[](https://pypi.org/project/deepctr)
[](https://pypi.org/project/deepctr)
[](https://pepy.tech/project/deepctr)
[](https://pypi.org/project/deepctr)
[](https://github.com/shenweichen/deepctr/issues)
[](https://deepctr-doc.readthedocs.io/)

[](https://codecov.io/gh/shenweichen/DeepCTR)
[](https://www.codacy.com/gh/shenweichen/DeepCTR?utm_source=github.com&utm_medium=referral&utm_content=shenweichen/DeepCTR&utm_campaign=Badge_Grade)
[](./README.md#DisscussionGroup)
[](https://github.com/shenweichen/deepctr/blob/master/LICENSE)
DeepCTR is a **Easy-to-use**, **Modular** and **Extendible** package of deep-learning based CTR models along with lots of
core components layers which can be used to easily build custom models.You can use any complex model with `model.fit()`
,and `model.predict()` .
- Provide `tf.keras.Model` like interfaces for **quick experiment**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr)
- Provide `tensorflow estimator` interface for **large scale data** and **distributed training**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr-estimator-with-tfrecord)
- It is compatible with both `tf 1.x` and `tf 2.x`.
Some related projects:
- DeepMatch: https://github.com/shenweichen/DeepMatch
- DeepCTR-Torch: https://github.com/shenweichen/DeepCTR-Torch
Let's [**Get Started!**](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html)([Chinese
Introduction](https://zhuanlan.zhihu.com/p/53231955)) and [welcome to join us!](./CONTRIBUTING.md)
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| FwFM | [WWW 2018][Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](https://arxiv.org/pdf/1806.03514.pdf) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FGCNN | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ](https://arxiv.org/pdf/1904.04447) |
| Deep Session Interest Network | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| FLEN | [arxiv 2019][FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690.pdf) |
| BST | [DLP-KDD 2019][Behavior sequence transformer for e-commerce recommendation in Alibaba](https://arxiv.org/pdf/1905.06874.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| FEFM and DeepFEFM | [arxiv 2020][Field-Embedded Factorization Machines for Click-through rate prediction](https://arxiv.org/abs/2009.09931) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
| EDCN | [KDD 2021][Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf) |
## Citation
- Weichen Shen. (2017). DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR
models. https://github.com/shenweichen/deepctr.
If you find this code useful in your research, please cite it using the following BibTeX:
```bibtex
@misc{shen2017deepctr,
author = {Weichen Shen},
title = {DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR models},
year = {2017},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/shenweichen/deepctr}},
}
```
## DisscussionGroup
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions
|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [](https://github.com/shenweichen/AlgoNotes)| [](https://github.com/shenweichen/AlgoNotes)|[](https://t.zsxq.com/026UJEuzv)|
## Main contributors([welcome to join us!](./CONTRIBUTING.md))
%package help
Summary: Development documents and examples for deepctr
Provides: python3-deepctr-doc
%description help
# DeepCTR
[](https://pypi.org/project/deepctr)
[](https://pypi.org/project/deepctr)
[](https://pepy.tech/project/deepctr)
[](https://pypi.org/project/deepctr)
[](https://github.com/shenweichen/deepctr/issues)
[](https://deepctr-doc.readthedocs.io/)

[](https://codecov.io/gh/shenweichen/DeepCTR)
[](https://www.codacy.com/gh/shenweichen/DeepCTR?utm_source=github.com&utm_medium=referral&utm_content=shenweichen/DeepCTR&utm_campaign=Badge_Grade)
[](./README.md#DisscussionGroup)
[](https://github.com/shenweichen/deepctr/blob/master/LICENSE)
DeepCTR is a **Easy-to-use**, **Modular** and **Extendible** package of deep-learning based CTR models along with lots of
core components layers which can be used to easily build custom models.You can use any complex model with `model.fit()`
,and `model.predict()` .
- Provide `tf.keras.Model` like interfaces for **quick experiment**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr)
- Provide `tensorflow estimator` interface for **large scale data** and **distributed training**. [example](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html#getting-started-4-steps-to-deepctr-estimator-with-tfrecord)
- It is compatible with both `tf 1.x` and `tf 2.x`.
Some related projects:
- DeepMatch: https://github.com/shenweichen/DeepMatch
- DeepCTR-Torch: https://github.com/shenweichen/DeepCTR-Torch
Let's [**Get Started!**](https://deepctr-doc.readthedocs.io/en/latest/Quick-Start.html)([Chinese
Introduction](https://zhuanlan.zhihu.com/p/53231955)) and [welcome to join us!](./CONTRIBUTING.md)
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| FwFM | [WWW 2018][Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](https://arxiv.org/pdf/1806.03514.pdf) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FGCNN | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction ](https://arxiv.org/pdf/1904.04447) |
| Deep Session Interest Network | [IJCAI 2019][Deep Session Interest Network for Click-Through Rate Prediction ](https://arxiv.org/abs/1905.06482) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| FLEN | [arxiv 2019][FLEN: Leveraging Field for Scalable CTR Prediction](https://arxiv.org/pdf/1911.04690.pdf) |
| BST | [DLP-KDD 2019][Behavior sequence transformer for e-commerce recommendation in Alibaba](https://arxiv.org/pdf/1905.06874.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| FEFM and DeepFEFM | [arxiv 2020][Field-Embedded Factorization Machines for Click-through rate prediction](https://arxiv.org/abs/2009.09931) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
| EDCN | [KDD 2021][Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models](https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf) |
## Citation
- Weichen Shen. (2017). DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR
models. https://github.com/shenweichen/deepctr.
If you find this code useful in your research, please cite it using the following BibTeX:
```bibtex
@misc{shen2017deepctr,
author = {Weichen Shen},
title = {DeepCTR: Easy-to-use,Modular and Extendible package of deep-learning based CTR models},
year = {2017},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/shenweichen/deepctr}},
}
```
## DisscussionGroup
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions
|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [](https://github.com/shenweichen/AlgoNotes)| [](https://github.com/shenweichen/AlgoNotes)|[](https://t.zsxq.com/026UJEuzv)|
## Main contributors([welcome to join us!](./CONTRIBUTING.md))
%prep
%autosetup -n deepctr-0.9.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-deepctr -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed Apr 12 2023 Python_Bot - 0.9.3-1
- Package Spec generated