%global _empty_manifest_terminate_build 0
Name: python-migen
Version: 0.9.2
Release: 1
Summary: Python toolbox for building complex digital hardware
License: BSD
URL: https://m-labs.hk
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cc/f0/b38382ac821861c193992817e3687e49122d09f130f6a33a7d01a4f01bc1/migen-0.9.2.tar.gz
BuildArch: noarch
%description
### Migen (Milkymist generator)
#### A Python toolbox for building complex digital hardware
Despite being faster than schematics entry, hardware design with Verilog and
VHDL remains tedious and inefficient for several reasons. The event-driven
model introduces issues and manual coding that are unnecessary for synchronous
circuits, which represent the lion's share of today's logic designs. Counter-
intuitive arithmetic rules result in steeper learning curves and provide a
fertile ground for subtle bugs in designs. Finally, support for procedural
generation of logic (metaprogramming) through "generate" statements is very
limited and restricts the ways code can be made generic, reused and organized.
To address those issues, we have developed the **Migen FHDL** library that
replaces the event-driven paradigm with the notions of combinatorial and
synchronous statements, has arithmetic rules that make integers always behave
like mathematical integers, and most importantly allows the design's logic to
be constructed by a Python program. This last point enables hardware designers
to take advantage of the richness of the Python language - object oriented
programming, function parameters, generators, operator overloading, libraries,
etc. - to build well organized, reusable and elegant designs.
Other Migen libraries are built on FHDL and provide various tools such as a
system-on-chip interconnect infrastructure, a dataflow programming system, a
more traditional high-level synthesizer that compiles Python routines into
state machines with datapaths, and a simulator that allows test benches to be
written in Python.
See the doc/ folder for more technical information.
Migen is designed for Python 3.5. Note that Migen is **not** spelled MiGen.
#### Quick Links
Code repository:
https://github.com/m-labs/migen
System-on-chip design based on Migen:
https://github.com/m-labs/misoc
Online documentation:
https://m-labs.hk/migen/manual/
#### Quick intro
```python
from migen import *
from migen.build.platforms import m1
plat = m1.Platform()
led = plat.request("user_led")
m = Module()
counter = Signal(26)
m.comb += led.eq(counter[25])
m.sync += counter.eq(counter + 1)
plat.build(m)
```
#### License
Migen is released under the very permissive two-clause BSD license. Under the
terms of this license, you are authorized to use Migen for closed-source
proprietary designs.
Even though we do not require you to do so, those things are awesome, so please
do them if possible:
* tell us that you are using Migen
* put the Migen logo (doc/migen_logo.svg) on the page of a product using it,
with a link to http://m-labs.hk
* cite Migen in publications related to research it has helped
* send us feedback and suggestions for improvements
* send us bug reports when something goes wrong
* send us the modifications and improvements you have done to Migen. The use
of "git format-patch" is recommended. If your submission is large and
complex and/or you are not sure how to proceed, feel free to discuss it on
the mailing list or IRC (#m-labs on Freenode) beforehand.
See LICENSE file for full copyright and license info. You can contact us on the
public mailing list devel [AT] lists.m-labs.hk.
"Electricity! It's like magic!"
%package -n python3-migen
Summary: Python toolbox for building complex digital hardware
Provides: python-migen
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-migen
### Migen (Milkymist generator)
#### A Python toolbox for building complex digital hardware
Despite being faster than schematics entry, hardware design with Verilog and
VHDL remains tedious and inefficient for several reasons. The event-driven
model introduces issues and manual coding that are unnecessary for synchronous
circuits, which represent the lion's share of today's logic designs. Counter-
intuitive arithmetic rules result in steeper learning curves and provide a
fertile ground for subtle bugs in designs. Finally, support for procedural
generation of logic (metaprogramming) through "generate" statements is very
limited and restricts the ways code can be made generic, reused and organized.
To address those issues, we have developed the **Migen FHDL** library that
replaces the event-driven paradigm with the notions of combinatorial and
synchronous statements, has arithmetic rules that make integers always behave
like mathematical integers, and most importantly allows the design's logic to
be constructed by a Python program. This last point enables hardware designers
to take advantage of the richness of the Python language - object oriented
programming, function parameters, generators, operator overloading, libraries,
etc. - to build well organized, reusable and elegant designs.
Other Migen libraries are built on FHDL and provide various tools such as a
system-on-chip interconnect infrastructure, a dataflow programming system, a
more traditional high-level synthesizer that compiles Python routines into
state machines with datapaths, and a simulator that allows test benches to be
written in Python.
See the doc/ folder for more technical information.
Migen is designed for Python 3.5. Note that Migen is **not** spelled MiGen.
#### Quick Links
Code repository:
https://github.com/m-labs/migen
System-on-chip design based on Migen:
https://github.com/m-labs/misoc
Online documentation:
https://m-labs.hk/migen/manual/
#### Quick intro
```python
from migen import *
from migen.build.platforms import m1
plat = m1.Platform()
led = plat.request("user_led")
m = Module()
counter = Signal(26)
m.comb += led.eq(counter[25])
m.sync += counter.eq(counter + 1)
plat.build(m)
```
#### License
Migen is released under the very permissive two-clause BSD license. Under the
terms of this license, you are authorized to use Migen for closed-source
proprietary designs.
Even though we do not require you to do so, those things are awesome, so please
do them if possible:
* tell us that you are using Migen
* put the Migen logo (doc/migen_logo.svg) on the page of a product using it,
with a link to http://m-labs.hk
* cite Migen in publications related to research it has helped
* send us feedback and suggestions for improvements
* send us bug reports when something goes wrong
* send us the modifications and improvements you have done to Migen. The use
of "git format-patch" is recommended. If your submission is large and
complex and/or you are not sure how to proceed, feel free to discuss it on
the mailing list or IRC (#m-labs on Freenode) beforehand.
See LICENSE file for full copyright and license info. You can contact us on the
public mailing list devel [AT] lists.m-labs.hk.
"Electricity! It's like magic!"
%package help
Summary: Development documents and examples for migen
Provides: python3-migen-doc
%description help
### Migen (Milkymist generator)
#### A Python toolbox for building complex digital hardware
Despite being faster than schematics entry, hardware design with Verilog and
VHDL remains tedious and inefficient for several reasons. The event-driven
model introduces issues and manual coding that are unnecessary for synchronous
circuits, which represent the lion's share of today's logic designs. Counter-
intuitive arithmetic rules result in steeper learning curves and provide a
fertile ground for subtle bugs in designs. Finally, support for procedural
generation of logic (metaprogramming) through "generate" statements is very
limited and restricts the ways code can be made generic, reused and organized.
To address those issues, we have developed the **Migen FHDL** library that
replaces the event-driven paradigm with the notions of combinatorial and
synchronous statements, has arithmetic rules that make integers always behave
like mathematical integers, and most importantly allows the design's logic to
be constructed by a Python program. This last point enables hardware designers
to take advantage of the richness of the Python language - object oriented
programming, function parameters, generators, operator overloading, libraries,
etc. - to build well organized, reusable and elegant designs.
Other Migen libraries are built on FHDL and provide various tools such as a
system-on-chip interconnect infrastructure, a dataflow programming system, a
more traditional high-level synthesizer that compiles Python routines into
state machines with datapaths, and a simulator that allows test benches to be
written in Python.
See the doc/ folder for more technical information.
Migen is designed for Python 3.5. Note that Migen is **not** spelled MiGen.
#### Quick Links
Code repository:
https://github.com/m-labs/migen
System-on-chip design based on Migen:
https://github.com/m-labs/misoc
Online documentation:
https://m-labs.hk/migen/manual/
#### Quick intro
```python
from migen import *
from migen.build.platforms import m1
plat = m1.Platform()
led = plat.request("user_led")
m = Module()
counter = Signal(26)
m.comb += led.eq(counter[25])
m.sync += counter.eq(counter + 1)
plat.build(m)
```
#### License
Migen is released under the very permissive two-clause BSD license. Under the
terms of this license, you are authorized to use Migen for closed-source
proprietary designs.
Even though we do not require you to do so, those things are awesome, so please
do them if possible:
* tell us that you are using Migen
* put the Migen logo (doc/migen_logo.svg) on the page of a product using it,
with a link to http://m-labs.hk
* cite Migen in publications related to research it has helped
* send us feedback and suggestions for improvements
* send us bug reports when something goes wrong
* send us the modifications and improvements you have done to Migen. The use
of "git format-patch" is recommended. If your submission is large and
complex and/or you are not sure how to proceed, feel free to discuss it on
the mailing list or IRC (#m-labs on Freenode) beforehand.
See LICENSE file for full copyright and license info. You can contact us on the
public mailing list devel [AT] lists.m-labs.hk.
"Electricity! It's like magic!"
%prep
%autosetup -n migen-0.9.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-migen -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Apr 21 2023 Python_Bot - 0.9.2-1
- Package Spec generated