%global _empty_manifest_terminate_build 0 Name: python-kats Version: 0.2.0 Release: 1 Summary: kats: kit to analyze time series License: MIT URL: https://github.com/facebookresearch/Kats Source0: https://mirrors.nju.edu.cn/pypi/web/packages/68/63/f5e85aff48eefa196b0cb9e21debedf451e842925b12fb5b724f765ca249/kats-0.2.0.tar.gz BuildArch: noarch Requires: python3-attrs Requires: python3-deprecated Requires: python3-matplotlib Requires: python3-numpy Requires: python3-pandas Requires: python3-dateutil Requires: python3-pystan Requires: python3-fbprophet Requires: python3-scikit-learn Requires: python3-scipy Requires: python3-seaborn Requires: python3-setuptools-git Requires: python3-statsmodels Requires: python3-LunarCalendar Requires: python3-ax-platform Requires: python3-gpytorch Requires: python3-holidays Requires: python3-numba Requires: python3-parameterized Requires: python3-plotly Requires: python3-pymannkendall Requires: python3-pytest-mpl Requires: python3-torch Requires: python3-tqdm Requires: python3-importlib-metadata Requires: python3-typing-extensions %description
Github Actions PyPI Version PRs Welcome
## Description Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis, including detection, forecasting, feature extraction/embedding, multivariate analysis, etc. Kats is released by Facebook's *Infrastructure Data Science* team. It is available for download on [PyPI](https://pypi.python.org/pypi/kats/). ## Important links - Homepage: https://facebookresearch.github.io/Kats/ - Kats Python package: https://pypi.org/project/kats/0.1.0/ - Facebook Engineering Blog Post: https://engineering.fb.com/2021/06/21/open-source/kats/ - Source code repository: https://github.com/facebookresearch/kats - Contributing: https://github.com/facebookresearch/Kats/blob/master/CONTRIBUTING.md - Tutorials: https://github.com/facebookresearch/Kats/tree/master/tutorials ## Installation in Python Kats is on PyPI, so you can use `pip` to install it. ```bash pip install --upgrade pip pip install kats ``` If you need only a small subset of Kats, you can install a minimal version of Kats with ```bash MINIMAL_KATS=1 pip install kats ``` which omits many dependencies (everything in `test_requirements.txt`). However, this will disable many functionalities and cause `import kats` to log warnings. See `setup.py` for full details and options. ## Examples Here are a few sample snippets from a subset of Kats offerings: ### Forecasting Using `Prophet` model to forecast the `air_passengers` data set. ```python import pandas as pd from kats.consts import TimeSeriesData from kats.models.prophet import ProphetModel, ProphetParams # take `air_passengers` data as an example air_passengers_df = pd.read_csv( "../kats/data/air_passengers.csv", header=0, names=["time", "passengers"], ) # convert to TimeSeriesData object air_passengers_ts = TimeSeriesData(air_passengers_df) # create a model param instance params = ProphetParams(seasonality_mode='multiplicative') # additive mode gives worse results # create a prophet model instance m = ProphetModel(air_passengers_ts, params) # fit model simply by calling m.fit() m.fit() # make prediction for next 30 month fcst = m.predict(steps=30, freq="MS") ``` ### Detection Using `CUSUM` detection algorithm on simulated data set. ```python # import packages import numpy as np import pandas as pd from kats.consts import TimeSeriesData from kats.detectors.cusum_detection import CUSUMDetector # simulate time series with increase np.random.seed(10) df_increase = pd.DataFrame( { 'time': pd.date_range('2019-01-01', '2019-03-01'), 'increase':np.concatenate([np.random.normal(1,0.2,30), np.random.normal(2,0.2,30)]), } ) # convert to TimeSeriesData object timeseries = TimeSeriesData(df_increase) # run detector and find change points change_points = CUSUMDetector(timeseries).detector() ``` ### TSFeatures We can extract meaningful features from the given time series data ```python # Initiate feature extraction class import pandas as pd from kats.consts import TimeSeriesData from kats.tsfeatures.tsfeatures import TsFeatures # take `air_passengers` data as an example air_passengers_df = pd.read_csv( "../kats/data/air_passengers.csv", header=0, names=["time", "passengers"], ) # convert to TimeSeriesData object air_passengers_ts = TimeSeriesData(air_passengers_df) # calculate the TsFeatures features = TsFeatures().transform(air_passengers_ts) ``` ## Changelog ### Version 0.2.0 * Forecasting * Added global model, a neural network forecasting model * Added [global model tutorial](https://github.com/facebookresearch/Kats/blob/main/tutorials/kats_205_globalmodel.ipynb) * Consolidated backtesting APIs and some minor bug fixes * Detection * Added model optimizer for anomaly/ changepoint detection * Added evaluators for anomaly/changepoint detection * Improved simulators, to build synthetic data and inject anomalies * Added new detectors: ProphetTrendDetector, Dynamic Time Warping based detectors * Support for meta-learning, to recommend anomaly detection algorithms and parameters for your dataset * Standardized API for some of our legacy detectors: OutlierDetector, MKDetector * Support for Seasonality Removal in StatSigDetector * TsFeatures * Added time-based features * Others * Bug fixes, code coverage improvement, etc. ### Version 0.1.0 * Initial release ## Contributors Kats is a project with several skillful researchers and engineers contributing to it. Kats is currently maintained by [Xiaodong Jiang](https://www.linkedin.com/in/xdjiang/) with major contributions coming from many talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: [Sudeep Srivastava](https://www.linkedin.com/in/sudeep-srivastava-2129484/), [Sourav Chatterjee](https://www.linkedin.com/in/souravc83/), [Jeff Handler](https://www.linkedin.com/in/jeffhandl/), [Rohan Bopardikar](https://www.linkedin.com/in/rohan-bopardikar-30a99638), [Dawei Li](https://www.linkedin.com/in/lidawei/), [Yanjun Lin](https://www.linkedin.com/in/yanjun-lin/), [Yang Yu](https://www.linkedin.com/in/yangyu2720/), [Michael Brundage](https://www.linkedin.com/in/michaelb), [Caner Komurlu](https://www.linkedin.com/in/ckomurlu/), [Rakshita Nagalla](https://www.linkedin.com/in/rakshita-nagalla/), [Zhichao Wang](https://www.linkedin.com/in/zhichaowang/), [Hechao Sun](https://www.linkedin.com/in/hechao-sun-83b9ba4b/), [Peng Gao](https://www.linkedin.com/in/peng-gao-9137a24b/), [Wei Cheung](https://www.linkedin.com/in/weizhicheung/), [Jun Gao](https://www.linkedin.com/in/jun-gao-71352b64/), [Qi Wang](https://www.linkedin.com/in/qi-wang-9231a783/), [Morteza Kazemi](https://www.linkedin.com/in/morteza-kazemi-pmp-csm/), [Tihamér Levendovszky](https://www.linkedin.com/in/tiham%C3%A9r-levendovszky-29639b5/), [Jian Zhang](https://www.linkedin.com/in/jian-zhang-73718917/), [Ahmet Koylan](https://www.linkedin.com/in/ahmetburhan/), [Kun Jiang](https://www.linkedin.com/in/kunqiang-jiang-ph-d-0988aa1b/), [Aida Shoydokova](https://www.linkedin.com/in/ashoydok/), [Ploy Temiyasathit](https://www.linkedin.com/in/nutcha-temiyasathit/), Sean Lee, [Nikolay Pavlovich Laptev](http://www.nikolaylaptev.com/), [Peiyi Zhang](https://www.linkedin.com/in/pyzhang/), [Emre Yurtbay](https://www.linkedin.com/in/emre-yurtbay-27516313a/), [Daniel Dequech](https://www.linkedin.com/in/daniel-dequech/), [Rui Yan](https://www.linkedin.com/in/rui-yan/), [William Luo](https://www.linkedin.com/in/wqcluo/), [Marius Guerard](https://www.linkedin.com/in/mariusguerard/), and [Pietari Pulkkinen](https://www.linkedin.com/in/pietaripulkkinen/). ## License Kats is licensed under the [MIT license](LICENSE). %package -n python3-kats Summary: kats: kit to analyze time series Provides: python-kats BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-kats
Github Actions PyPI Version PRs Welcome
## Description Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis, including detection, forecasting, feature extraction/embedding, multivariate analysis, etc. Kats is released by Facebook's *Infrastructure Data Science* team. It is available for download on [PyPI](https://pypi.python.org/pypi/kats/). ## Important links - Homepage: https://facebookresearch.github.io/Kats/ - Kats Python package: https://pypi.org/project/kats/0.1.0/ - Facebook Engineering Blog Post: https://engineering.fb.com/2021/06/21/open-source/kats/ - Source code repository: https://github.com/facebookresearch/kats - Contributing: https://github.com/facebookresearch/Kats/blob/master/CONTRIBUTING.md - Tutorials: https://github.com/facebookresearch/Kats/tree/master/tutorials ## Installation in Python Kats is on PyPI, so you can use `pip` to install it. ```bash pip install --upgrade pip pip install kats ``` If you need only a small subset of Kats, you can install a minimal version of Kats with ```bash MINIMAL_KATS=1 pip install kats ``` which omits many dependencies (everything in `test_requirements.txt`). However, this will disable many functionalities and cause `import kats` to log warnings. See `setup.py` for full details and options. ## Examples Here are a few sample snippets from a subset of Kats offerings: ### Forecasting Using `Prophet` model to forecast the `air_passengers` data set. ```python import pandas as pd from kats.consts import TimeSeriesData from kats.models.prophet import ProphetModel, ProphetParams # take `air_passengers` data as an example air_passengers_df = pd.read_csv( "../kats/data/air_passengers.csv", header=0, names=["time", "passengers"], ) # convert to TimeSeriesData object air_passengers_ts = TimeSeriesData(air_passengers_df) # create a model param instance params = ProphetParams(seasonality_mode='multiplicative') # additive mode gives worse results # create a prophet model instance m = ProphetModel(air_passengers_ts, params) # fit model simply by calling m.fit() m.fit() # make prediction for next 30 month fcst = m.predict(steps=30, freq="MS") ``` ### Detection Using `CUSUM` detection algorithm on simulated data set. ```python # import packages import numpy as np import pandas as pd from kats.consts import TimeSeriesData from kats.detectors.cusum_detection import CUSUMDetector # simulate time series with increase np.random.seed(10) df_increase = pd.DataFrame( { 'time': pd.date_range('2019-01-01', '2019-03-01'), 'increase':np.concatenate([np.random.normal(1,0.2,30), np.random.normal(2,0.2,30)]), } ) # convert to TimeSeriesData object timeseries = TimeSeriesData(df_increase) # run detector and find change points change_points = CUSUMDetector(timeseries).detector() ``` ### TSFeatures We can extract meaningful features from the given time series data ```python # Initiate feature extraction class import pandas as pd from kats.consts import TimeSeriesData from kats.tsfeatures.tsfeatures import TsFeatures # take `air_passengers` data as an example air_passengers_df = pd.read_csv( "../kats/data/air_passengers.csv", header=0, names=["time", "passengers"], ) # convert to TimeSeriesData object air_passengers_ts = TimeSeriesData(air_passengers_df) # calculate the TsFeatures features = TsFeatures().transform(air_passengers_ts) ``` ## Changelog ### Version 0.2.0 * Forecasting * Added global model, a neural network forecasting model * Added [global model tutorial](https://github.com/facebookresearch/Kats/blob/main/tutorials/kats_205_globalmodel.ipynb) * Consolidated backtesting APIs and some minor bug fixes * Detection * Added model optimizer for anomaly/ changepoint detection * Added evaluators for anomaly/changepoint detection * Improved simulators, to build synthetic data and inject anomalies * Added new detectors: ProphetTrendDetector, Dynamic Time Warping based detectors * Support for meta-learning, to recommend anomaly detection algorithms and parameters for your dataset * Standardized API for some of our legacy detectors: OutlierDetector, MKDetector * Support for Seasonality Removal in StatSigDetector * TsFeatures * Added time-based features * Others * Bug fixes, code coverage improvement, etc. ### Version 0.1.0 * Initial release ## Contributors Kats is a project with several skillful researchers and engineers contributing to it. Kats is currently maintained by [Xiaodong Jiang](https://www.linkedin.com/in/xdjiang/) with major contributions coming from many talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: [Sudeep Srivastava](https://www.linkedin.com/in/sudeep-srivastava-2129484/), [Sourav Chatterjee](https://www.linkedin.com/in/souravc83/), [Jeff Handler](https://www.linkedin.com/in/jeffhandl/), [Rohan Bopardikar](https://www.linkedin.com/in/rohan-bopardikar-30a99638), [Dawei Li](https://www.linkedin.com/in/lidawei/), [Yanjun Lin](https://www.linkedin.com/in/yanjun-lin/), [Yang Yu](https://www.linkedin.com/in/yangyu2720/), [Michael Brundage](https://www.linkedin.com/in/michaelb), [Caner Komurlu](https://www.linkedin.com/in/ckomurlu/), [Rakshita Nagalla](https://www.linkedin.com/in/rakshita-nagalla/), [Zhichao Wang](https://www.linkedin.com/in/zhichaowang/), [Hechao Sun](https://www.linkedin.com/in/hechao-sun-83b9ba4b/), [Peng Gao](https://www.linkedin.com/in/peng-gao-9137a24b/), [Wei Cheung](https://www.linkedin.com/in/weizhicheung/), [Jun Gao](https://www.linkedin.com/in/jun-gao-71352b64/), [Qi Wang](https://www.linkedin.com/in/qi-wang-9231a783/), [Morteza Kazemi](https://www.linkedin.com/in/morteza-kazemi-pmp-csm/), [Tihamér Levendovszky](https://www.linkedin.com/in/tiham%C3%A9r-levendovszky-29639b5/), [Jian Zhang](https://www.linkedin.com/in/jian-zhang-73718917/), [Ahmet Koylan](https://www.linkedin.com/in/ahmetburhan/), [Kun Jiang](https://www.linkedin.com/in/kunqiang-jiang-ph-d-0988aa1b/), [Aida Shoydokova](https://www.linkedin.com/in/ashoydok/), [Ploy Temiyasathit](https://www.linkedin.com/in/nutcha-temiyasathit/), Sean Lee, [Nikolay Pavlovich Laptev](http://www.nikolaylaptev.com/), [Peiyi Zhang](https://www.linkedin.com/in/pyzhang/), [Emre Yurtbay](https://www.linkedin.com/in/emre-yurtbay-27516313a/), [Daniel Dequech](https://www.linkedin.com/in/daniel-dequech/), [Rui Yan](https://www.linkedin.com/in/rui-yan/), [William Luo](https://www.linkedin.com/in/wqcluo/), [Marius Guerard](https://www.linkedin.com/in/mariusguerard/), and [Pietari Pulkkinen](https://www.linkedin.com/in/pietaripulkkinen/). ## License Kats is licensed under the [MIT license](LICENSE). %package help Summary: Development documents and examples for kats Provides: python3-kats-doc %description help
Github Actions PyPI Version PRs Welcome
## Description Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis, including detection, forecasting, feature extraction/embedding, multivariate analysis, etc. Kats is released by Facebook's *Infrastructure Data Science* team. It is available for download on [PyPI](https://pypi.python.org/pypi/kats/). ## Important links - Homepage: https://facebookresearch.github.io/Kats/ - Kats Python package: https://pypi.org/project/kats/0.1.0/ - Facebook Engineering Blog Post: https://engineering.fb.com/2021/06/21/open-source/kats/ - Source code repository: https://github.com/facebookresearch/kats - Contributing: https://github.com/facebookresearch/Kats/blob/master/CONTRIBUTING.md - Tutorials: https://github.com/facebookresearch/Kats/tree/master/tutorials ## Installation in Python Kats is on PyPI, so you can use `pip` to install it. ```bash pip install --upgrade pip pip install kats ``` If you need only a small subset of Kats, you can install a minimal version of Kats with ```bash MINIMAL_KATS=1 pip install kats ``` which omits many dependencies (everything in `test_requirements.txt`). However, this will disable many functionalities and cause `import kats` to log warnings. See `setup.py` for full details and options. ## Examples Here are a few sample snippets from a subset of Kats offerings: ### Forecasting Using `Prophet` model to forecast the `air_passengers` data set. ```python import pandas as pd from kats.consts import TimeSeriesData from kats.models.prophet import ProphetModel, ProphetParams # take `air_passengers` data as an example air_passengers_df = pd.read_csv( "../kats/data/air_passengers.csv", header=0, names=["time", "passengers"], ) # convert to TimeSeriesData object air_passengers_ts = TimeSeriesData(air_passengers_df) # create a model param instance params = ProphetParams(seasonality_mode='multiplicative') # additive mode gives worse results # create a prophet model instance m = ProphetModel(air_passengers_ts, params) # fit model simply by calling m.fit() m.fit() # make prediction for next 30 month fcst = m.predict(steps=30, freq="MS") ``` ### Detection Using `CUSUM` detection algorithm on simulated data set. ```python # import packages import numpy as np import pandas as pd from kats.consts import TimeSeriesData from kats.detectors.cusum_detection import CUSUMDetector # simulate time series with increase np.random.seed(10) df_increase = pd.DataFrame( { 'time': pd.date_range('2019-01-01', '2019-03-01'), 'increase':np.concatenate([np.random.normal(1,0.2,30), np.random.normal(2,0.2,30)]), } ) # convert to TimeSeriesData object timeseries = TimeSeriesData(df_increase) # run detector and find change points change_points = CUSUMDetector(timeseries).detector() ``` ### TSFeatures We can extract meaningful features from the given time series data ```python # Initiate feature extraction class import pandas as pd from kats.consts import TimeSeriesData from kats.tsfeatures.tsfeatures import TsFeatures # take `air_passengers` data as an example air_passengers_df = pd.read_csv( "../kats/data/air_passengers.csv", header=0, names=["time", "passengers"], ) # convert to TimeSeriesData object air_passengers_ts = TimeSeriesData(air_passengers_df) # calculate the TsFeatures features = TsFeatures().transform(air_passengers_ts) ``` ## Changelog ### Version 0.2.0 * Forecasting * Added global model, a neural network forecasting model * Added [global model tutorial](https://github.com/facebookresearch/Kats/blob/main/tutorials/kats_205_globalmodel.ipynb) * Consolidated backtesting APIs and some minor bug fixes * Detection * Added model optimizer for anomaly/ changepoint detection * Added evaluators for anomaly/changepoint detection * Improved simulators, to build synthetic data and inject anomalies * Added new detectors: ProphetTrendDetector, Dynamic Time Warping based detectors * Support for meta-learning, to recommend anomaly detection algorithms and parameters for your dataset * Standardized API for some of our legacy detectors: OutlierDetector, MKDetector * Support for Seasonality Removal in StatSigDetector * TsFeatures * Added time-based features * Others * Bug fixes, code coverage improvement, etc. ### Version 0.1.0 * Initial release ## Contributors Kats is a project with several skillful researchers and engineers contributing to it. Kats is currently maintained by [Xiaodong Jiang](https://www.linkedin.com/in/xdjiang/) with major contributions coming from many talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: [Sudeep Srivastava](https://www.linkedin.com/in/sudeep-srivastava-2129484/), [Sourav Chatterjee](https://www.linkedin.com/in/souravc83/), [Jeff Handler](https://www.linkedin.com/in/jeffhandl/), [Rohan Bopardikar](https://www.linkedin.com/in/rohan-bopardikar-30a99638), [Dawei Li](https://www.linkedin.com/in/lidawei/), [Yanjun Lin](https://www.linkedin.com/in/yanjun-lin/), [Yang Yu](https://www.linkedin.com/in/yangyu2720/), [Michael Brundage](https://www.linkedin.com/in/michaelb), [Caner Komurlu](https://www.linkedin.com/in/ckomurlu/), [Rakshita Nagalla](https://www.linkedin.com/in/rakshita-nagalla/), [Zhichao Wang](https://www.linkedin.com/in/zhichaowang/), [Hechao Sun](https://www.linkedin.com/in/hechao-sun-83b9ba4b/), [Peng Gao](https://www.linkedin.com/in/peng-gao-9137a24b/), [Wei Cheung](https://www.linkedin.com/in/weizhicheung/), [Jun Gao](https://www.linkedin.com/in/jun-gao-71352b64/), [Qi Wang](https://www.linkedin.com/in/qi-wang-9231a783/), [Morteza Kazemi](https://www.linkedin.com/in/morteza-kazemi-pmp-csm/), [Tihamér Levendovszky](https://www.linkedin.com/in/tiham%C3%A9r-levendovszky-29639b5/), [Jian Zhang](https://www.linkedin.com/in/jian-zhang-73718917/), [Ahmet Koylan](https://www.linkedin.com/in/ahmetburhan/), [Kun Jiang](https://www.linkedin.com/in/kunqiang-jiang-ph-d-0988aa1b/), [Aida Shoydokova](https://www.linkedin.com/in/ashoydok/), [Ploy Temiyasathit](https://www.linkedin.com/in/nutcha-temiyasathit/), Sean Lee, [Nikolay Pavlovich Laptev](http://www.nikolaylaptev.com/), [Peiyi Zhang](https://www.linkedin.com/in/pyzhang/), [Emre Yurtbay](https://www.linkedin.com/in/emre-yurtbay-27516313a/), [Daniel Dequech](https://www.linkedin.com/in/daniel-dequech/), [Rui Yan](https://www.linkedin.com/in/rui-yan/), [William Luo](https://www.linkedin.com/in/wqcluo/), [Marius Guerard](https://www.linkedin.com/in/mariusguerard/), and [Pietari Pulkkinen](https://www.linkedin.com/in/pietaripulkkinen/). ## License Kats is licensed under the [MIT license](LICENSE). %prep %autosetup -n kats-0.2.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-kats -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Sun Apr 23 2023 Python_Bot - 0.2.0-1 - Package Spec generated