%global _empty_manifest_terminate_build 0 Name: python-bert-for-tf2 Version: 0.14.9 Release: 1 Summary: A TensorFlow 2.0 Keras implementation of BERT. License: MIT URL: https://github.com/kpe/bert-for-tf2/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a5/a1/acb891630749c56901e770a34d6bac8a509a367dd74a05daf7306952e910/bert-for-tf2-0.14.9.tar.gz BuildArch: noarch %description |Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads| This repo contains a `TensorFlow 2.0`_ `Keras`_ implementation of `google-research/bert`_ with support for loading of the original `pre-trained weights`_, and producing activations **numerically identical** to the one calculated by the original model. `ALBERT`_ and `adapter-BERT`_ are also supported by setting the corresponding configuration parameters (``shared_layer=True``, ``embedding_size`` for `ALBERT`_ and ``adapter_size`` for `adapter-BERT`_). Setting both will result in an adapter-ALBERT by sharing the BERT parameters across all layers while adapting every layer with layer specific adapter. The implementation is build from scratch using only basic tensorflow operations, following the code in `google-research/bert/modeling.py`_ (but skipping dead code and applying some simplifications). It also utilizes `kpe/params-flow`_ to reduce common Keras boilerplate code (related to passing model and layer configuration arguments). `bert-for-tf2`_ should work with both `TensorFlow 2.0`_ and `TensorFlow 1.14`_ or newer. %package -n python3-bert-for-tf2 Summary: A TensorFlow 2.0 Keras implementation of BERT. Provides: python-bert-for-tf2 BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-bert-for-tf2 |Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads| This repo contains a `TensorFlow 2.0`_ `Keras`_ implementation of `google-research/bert`_ with support for loading of the original `pre-trained weights`_, and producing activations **numerically identical** to the one calculated by the original model. `ALBERT`_ and `adapter-BERT`_ are also supported by setting the corresponding configuration parameters (``shared_layer=True``, ``embedding_size`` for `ALBERT`_ and ``adapter_size`` for `adapter-BERT`_). Setting both will result in an adapter-ALBERT by sharing the BERT parameters across all layers while adapting every layer with layer specific adapter. The implementation is build from scratch using only basic tensorflow operations, following the code in `google-research/bert/modeling.py`_ (but skipping dead code and applying some simplifications). It also utilizes `kpe/params-flow`_ to reduce common Keras boilerplate code (related to passing model and layer configuration arguments). `bert-for-tf2`_ should work with both `TensorFlow 2.0`_ and `TensorFlow 1.14`_ or newer. %package help Summary: Development documents and examples for bert-for-tf2 Provides: python3-bert-for-tf2-doc %description help |Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads| This repo contains a `TensorFlow 2.0`_ `Keras`_ implementation of `google-research/bert`_ with support for loading of the original `pre-trained weights`_, and producing activations **numerically identical** to the one calculated by the original model. `ALBERT`_ and `adapter-BERT`_ are also supported by setting the corresponding configuration parameters (``shared_layer=True``, ``embedding_size`` for `ALBERT`_ and ``adapter_size`` for `adapter-BERT`_). Setting both will result in an adapter-ALBERT by sharing the BERT parameters across all layers while adapting every layer with layer specific adapter. The implementation is build from scratch using only basic tensorflow operations, following the code in `google-research/bert/modeling.py`_ (but skipping dead code and applying some simplifications). It also utilizes `kpe/params-flow`_ to reduce common Keras boilerplate code (related to passing model and layer configuration arguments). `bert-for-tf2`_ should work with both `TensorFlow 2.0`_ and `TensorFlow 1.14`_ or newer. %prep %autosetup -n bert-for-tf2-0.14.9 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-bert-for-tf2 -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Sun Apr 23 2023 Python_Bot - 0.14.9-1 - Package Spec generated