%global _empty_manifest_terminate_build 0 Name: python-OpenNMT-tf Version: 2.31.0 Release: 1 Summary: Neural machine translation and sequence learning using TensorFlow License: MIT URL: https://opennmt.net Source0: https://mirrors.nju.edu.cn/pypi/web/packages/5d/8d/4b12ae213b41eb63e19b1d0a7f4e71287dc0ff5b3e13ef8b098fbd8ab169/OpenNMT-tf-2.31.0.tar.gz BuildArch: noarch Requires: python3-ctranslate2 Requires: python3-packaging Requires: python3-pyonmttok Requires: python3-pyyaml Requires: python3-rouge Requires: python3-sacrebleu Requires: python3-tensorflow-addons Requires: python3-myst-parser Requires: python3-sphinx-rtd-theme Requires: python3-sphinx Requires: python3-tensorflow Requires: python3-tensorflow-text Requires: python3-black Requires: python3-flake8 Requires: python3-isort Requires: python3-parameterized Requires: python3-pytest-cov %description OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as: * automatic evaluation during the training * multiple decoding strategy: greedy search, beam search, random sampling * N-best rescoring * gradient accumulation * scheduled sampling * checkpoint averaging * ... and more! *See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.* ## Usage OpenNMT-tf requires: * Python 3.7 or above * TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11 We recommend installing it with `pip`: ```bash pip install --upgrade pip pip install OpenNMT-tf ``` *See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.* ### Command line OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models. For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements: * the **model** type * the **parameters** described in a YAML file * the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab` that are passed to the main script: ``` onmt-main --model_type --config --auto_config ``` *For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).* ### Library OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations. For example, the `Runner` class can be used to train and evaluate models with few lines of code: ```python import opennmt config = { "model_dir": "/data/wmt-ende/checkpoints/", "data": { "source_vocabulary": "/data/wmt-ende/joint-vocab.txt", "target_vocabulary": "/data/wmt-ende/joint-vocab.txt", "train_features_file": "/data/wmt-ende/train.en", "train_labels_file": "/data/wmt-ende/train.de", "eval_features_file": "/data/wmt-ende/valid.en", "eval_labels_file": "/data/wmt-ende/valid.de", } } model = opennmt.models.TransformerBase() runner = opennmt.Runner(model, config, auto_config=True) runner.train(num_devices=2, with_eval=True) ``` Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder: ```python decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000) initial_state = decoder.initial_state( memory=memory, memory_sequence_length=memory_sequence_length ) batch_size = tf.shape(memory)[0] start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID) decoding_result = decoder.dynamic_decode( target_embedding, start_ids=start_ids, initial_state=initial_state, decoding_strategy=opennmt.utils.BeamSearch(4), ) ``` More examples using OpenNMT-tf as a library can be found online: * The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library * [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving *For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).* ## Additional resources * [Documentation](https://opennmt.net/OpenNMT-tf) * [Forum](https://forum.opennmt.net) * [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf) %package -n python3-OpenNMT-tf Summary: Neural machine translation and sequence learning using TensorFlow Provides: python-OpenNMT-tf BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-OpenNMT-tf OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as: * automatic evaluation during the training * multiple decoding strategy: greedy search, beam search, random sampling * N-best rescoring * gradient accumulation * scheduled sampling * checkpoint averaging * ... and more! *See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.* ## Usage OpenNMT-tf requires: * Python 3.7 or above * TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11 We recommend installing it with `pip`: ```bash pip install --upgrade pip pip install OpenNMT-tf ``` *See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.* ### Command line OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models. For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements: * the **model** type * the **parameters** described in a YAML file * the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab` that are passed to the main script: ``` onmt-main --model_type --config --auto_config ``` *For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).* ### Library OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations. For example, the `Runner` class can be used to train and evaluate models with few lines of code: ```python import opennmt config = { "model_dir": "/data/wmt-ende/checkpoints/", "data": { "source_vocabulary": "/data/wmt-ende/joint-vocab.txt", "target_vocabulary": "/data/wmt-ende/joint-vocab.txt", "train_features_file": "/data/wmt-ende/train.en", "train_labels_file": "/data/wmt-ende/train.de", "eval_features_file": "/data/wmt-ende/valid.en", "eval_labels_file": "/data/wmt-ende/valid.de", } } model = opennmt.models.TransformerBase() runner = opennmt.Runner(model, config, auto_config=True) runner.train(num_devices=2, with_eval=True) ``` Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder: ```python decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000) initial_state = decoder.initial_state( memory=memory, memory_sequence_length=memory_sequence_length ) batch_size = tf.shape(memory)[0] start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID) decoding_result = decoder.dynamic_decode( target_embedding, start_ids=start_ids, initial_state=initial_state, decoding_strategy=opennmt.utils.BeamSearch(4), ) ``` More examples using OpenNMT-tf as a library can be found online: * The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library * [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving *For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).* ## Additional resources * [Documentation](https://opennmt.net/OpenNMT-tf) * [Forum](https://forum.opennmt.net) * [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf) %package help Summary: Development documents and examples for OpenNMT-tf Provides: python3-OpenNMT-tf-doc %description help OpenNMT-tf also implements most of the techniques commonly used to train and evaluate sequence models, such as: * automatic evaluation during the training * multiple decoding strategy: greedy search, beam search, random sampling * N-best rescoring * gradient accumulation * scheduled sampling * checkpoint averaging * ... and more! *See the [documentation](https://opennmt.net/OpenNMT-tf/) to learn how to use these features.* ## Usage OpenNMT-tf requires: * Python 3.7 or above * TensorFlow 2.6, 2.7, 2.8, 2.9, 2.10, or 2.11 We recommend installing it with `pip`: ```bash pip install --upgrade pip pip install OpenNMT-tf ``` *See the [documentation](https://opennmt.net/OpenNMT-tf/installation.html) for more information.* ### Command line OpenNMT-tf comes with several command line utilities to prepare data, train, and evaluate models. For all tasks involving a model execution, OpenNMT-tf uses a unique entrypoint: `onmt-main`. A typical OpenNMT-tf run consists of 3 elements: * the **model** type * the **parameters** described in a YAML file * the **run** type such as `train`, `eval`, `infer`, `export`, `score`, `average_checkpoints`, or `update_vocab` that are passed to the main script: ``` onmt-main --model_type --config --auto_config ``` *For more information and examples on how to use OpenNMT-tf, please visit [our documentation](https://opennmt.net/OpenNMT-tf).* ### Library OpenNMT-tf also exposes [well-defined and stable APIs](https://opennmt.net/OpenNMT-tf/package/overview.html), from high-level training utilities to low-level model layers and dataset transformations. For example, the `Runner` class can be used to train and evaluate models with few lines of code: ```python import opennmt config = { "model_dir": "/data/wmt-ende/checkpoints/", "data": { "source_vocabulary": "/data/wmt-ende/joint-vocab.txt", "target_vocabulary": "/data/wmt-ende/joint-vocab.txt", "train_features_file": "/data/wmt-ende/train.en", "train_labels_file": "/data/wmt-ende/train.de", "eval_features_file": "/data/wmt-ende/valid.en", "eval_labels_file": "/data/wmt-ende/valid.de", } } model = opennmt.models.TransformerBase() runner = opennmt.Runner(model, config, auto_config=True) runner.train(num_devices=2, with_eval=True) ``` Here is another example using OpenNMT-tf to run efficient beam search with a self-attentional decoder: ```python decoder = opennmt.decoders.SelfAttentionDecoder(num_layers=6, vocab_size=32000) initial_state = decoder.initial_state( memory=memory, memory_sequence_length=memory_sequence_length ) batch_size = tf.shape(memory)[0] start_ids = tf.fill([batch_size], opennmt.START_OF_SENTENCE_ID) decoding_result = decoder.dynamic_decode( target_embedding, start_ids=start_ids, initial_state=initial_state, decoding_strategy=opennmt.utils.BeamSearch(4), ) ``` More examples using OpenNMT-tf as a library can be found online: * The directory [examples/library](https://github.com/OpenNMT/OpenNMT-tf/tree/master/examples/library) contains additional examples that use OpenNMT-tf as a library * [nmt-wizard-docker](https://github.com/OpenNMT/nmt-wizard-docker) uses the high-level `opennmt.Runner` API to wrap OpenNMT-tf with a custom interface for training, translating, and serving *For a complete overview of the APIs, see the [package documentation](https://opennmt.net/OpenNMT-tf/package/overview.html).* ## Additional resources * [Documentation](https://opennmt.net/OpenNMT-tf) * [Forum](https://forum.opennmt.net) * [Gitter](https://gitter.im/OpenNMT/OpenNMT-tf) %prep %autosetup -n OpenNMT-tf-2.31.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-OpenNMT-tf -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 25 2023 Python_Bot - 2.31.0-1 - Package Spec generated