%global _empty_manifest_terminate_build 0 Name: python-bert-embedding Version: 1.0.1 Release: 1 Summary: BERT token level embedding with MxNet License: ALv2 URL: https://github.com/imgarylai/bert_embedding Source0: https://mirrors.nju.edu.cn/pypi/web/packages/32/49/13f76cef121677994bb1b0e8baa8b8bf88405eb1be554925fe8682b7b71e/bert_embedding-1.0.1.tar.gz BuildArch: noarch Requires: python3-typing Requires: python3-numpy Requires: python3-mxnet Requires: python3-gluonnlp Requires: python3-mxnet-cu92 %description # Bert Embeddings [![Build Status](https://travis-ci.org/imgarylai/bert-embedding.svg?branch=master)](https://travis-ci.org/imgarylai/bert-embedding) [![codecov](https://codecov.io/gh/imgarylai/bert-embedding/branch/master/graph/badge.svg)](https://codecov.io/gh/imgarylai/bert-embedding) [![PyPI version](https://badge.fury.io/py/bert-embedding.svg)](https://pypi.org/project/bert-embedding/) [![Documentation Status](https://readthedocs.org/projects/bert-embedding/badge/?version=latest)](https://bert-embedding.readthedocs.io/en/latest/?badge=latest) [BERT](https://arxiv.org/abs/1810.04805), published by [Google](https://github.com/google-research/bert), is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA. The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding. This project is implemented with [@MXNet](https://github.com/apache/incubator-mxnet). Special thanks to [@gluon-nlp](https://github.com/dmlc/gluon-nlp) team. ## Install ``` pip install bert-embedding # If you want to run on GPU machine, please install `mxnet-cu92`. pip install mxnet-cu92 ``` ## Usage ```python from bert_embedding import BertEmbedding bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.""" sentences = bert_abstract.split('\n') bert_embedding = BertEmbedding() result = bert_embedding(sentences) ``` If you want to use GPU, please import mxnet and set context ```python import mxnet as mx from bert_embedding import BertEmbedding ... ctx = mx.gpu(0) bert = BertEmbedding(ctx=ctx) ``` This result is a list of a tuple containing (tokens, tokens embedding) For example: ```python first_sentence = result[0] first_sentence[0] # ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers'] len(first_sentence[0]) # 18 len(first_sentence[1]) # 18 first_token_in_first_sentence = first_sentence[1] first_token_in_first_sentence[1] # array([ 0.4805648 , 0.18369392, -0.28554988, ..., -0.01961522, # 1.0207764 , -0.67167974], dtype=float32) first_token_in_first_sentence[1].shape # (768,) ``` ## OOV There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding. ```python ... bert_embedding = BertEmbedding() bert_embedding(sentences, 'sum') ... ``` ## Available pre-trained BERT models | |book_corpus_wiki_en_uncased|book_corpus_wiki_en_cased|wiki_multilingual|wiki_multilingual_cased|wiki_cn| |---|---|---|---|---|---| |bert_12_768_12|✓|✓|✓|✓|✓| |bert_24_1024_16|x|✓|x|x|x| Example of using the large pre-trained BERT model from Google ```python from bert_embedding import BertEmbedding bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased') ``` Source: [gluonnlp](http://gluon-nlp.mxnet.io/model_zoo/bert/index.html) %package -n python3-bert-embedding Summary: BERT token level embedding with MxNet Provides: python-bert-embedding BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-bert-embedding # Bert Embeddings [![Build Status](https://travis-ci.org/imgarylai/bert-embedding.svg?branch=master)](https://travis-ci.org/imgarylai/bert-embedding) [![codecov](https://codecov.io/gh/imgarylai/bert-embedding/branch/master/graph/badge.svg)](https://codecov.io/gh/imgarylai/bert-embedding) [![PyPI version](https://badge.fury.io/py/bert-embedding.svg)](https://pypi.org/project/bert-embedding/) [![Documentation Status](https://readthedocs.org/projects/bert-embedding/badge/?version=latest)](https://bert-embedding.readthedocs.io/en/latest/?badge=latest) [BERT](https://arxiv.org/abs/1810.04805), published by [Google](https://github.com/google-research/bert), is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA. The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding. This project is implemented with [@MXNet](https://github.com/apache/incubator-mxnet). Special thanks to [@gluon-nlp](https://github.com/dmlc/gluon-nlp) team. ## Install ``` pip install bert-embedding # If you want to run on GPU machine, please install `mxnet-cu92`. pip install mxnet-cu92 ``` ## Usage ```python from bert_embedding import BertEmbedding bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.""" sentences = bert_abstract.split('\n') bert_embedding = BertEmbedding() result = bert_embedding(sentences) ``` If you want to use GPU, please import mxnet and set context ```python import mxnet as mx from bert_embedding import BertEmbedding ... ctx = mx.gpu(0) bert = BertEmbedding(ctx=ctx) ``` This result is a list of a tuple containing (tokens, tokens embedding) For example: ```python first_sentence = result[0] first_sentence[0] # ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers'] len(first_sentence[0]) # 18 len(first_sentence[1]) # 18 first_token_in_first_sentence = first_sentence[1] first_token_in_first_sentence[1] # array([ 0.4805648 , 0.18369392, -0.28554988, ..., -0.01961522, # 1.0207764 , -0.67167974], dtype=float32) first_token_in_first_sentence[1].shape # (768,) ``` ## OOV There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding. ```python ... bert_embedding = BertEmbedding() bert_embedding(sentences, 'sum') ... ``` ## Available pre-trained BERT models | |book_corpus_wiki_en_uncased|book_corpus_wiki_en_cased|wiki_multilingual|wiki_multilingual_cased|wiki_cn| |---|---|---|---|---|---| |bert_12_768_12|✓|✓|✓|✓|✓| |bert_24_1024_16|x|✓|x|x|x| Example of using the large pre-trained BERT model from Google ```python from bert_embedding import BertEmbedding bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased') ``` Source: [gluonnlp](http://gluon-nlp.mxnet.io/model_zoo/bert/index.html) %package help Summary: Development documents and examples for bert-embedding Provides: python3-bert-embedding-doc %description help # Bert Embeddings [![Build Status](https://travis-ci.org/imgarylai/bert-embedding.svg?branch=master)](https://travis-ci.org/imgarylai/bert-embedding) [![codecov](https://codecov.io/gh/imgarylai/bert-embedding/branch/master/graph/badge.svg)](https://codecov.io/gh/imgarylai/bert-embedding) [![PyPI version](https://badge.fury.io/py/bert-embedding.svg)](https://pypi.org/project/bert-embedding/) [![Documentation Status](https://readthedocs.org/projects/bert-embedding/badge/?version=latest)](https://bert-embedding.readthedocs.io/en/latest/?badge=latest) [BERT](https://arxiv.org/abs/1810.04805), published by [Google](https://github.com/google-research/bert), is new way to obtain pre-trained language model word representation. Many NLP tasks are benefit from BERT to get the SOTA. The goal of this project is to obtain the token embedding from BERT's pre-trained model. In this way, instead of building and do fine-tuning for an end-to-end NLP model, you can build your model by just utilizing or token embedding. This project is implemented with [@MXNet](https://github.com/apache/incubator-mxnet). Special thanks to [@gluon-nlp](https://github.com/dmlc/gluon-nlp) team. ## Install ``` pip install bert-embedding # If you want to run on GPU machine, please install `mxnet-cu92`. pip install mxnet-cu92 ``` ## Usage ```python from bert_embedding import BertEmbedding bert_abstract = """We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.""" sentences = bert_abstract.split('\n') bert_embedding = BertEmbedding() result = bert_embedding(sentences) ``` If you want to use GPU, please import mxnet and set context ```python import mxnet as mx from bert_embedding import BertEmbedding ... ctx = mx.gpu(0) bert = BertEmbedding(ctx=ctx) ``` This result is a list of a tuple containing (tokens, tokens embedding) For example: ```python first_sentence = result[0] first_sentence[0] # ['we', 'introduce', 'a', 'new', 'language', 'representation', 'model', 'called', 'bert', ',', 'which', 'stands', 'for', 'bidirectional', 'encoder', 'representations', 'from', 'transformers'] len(first_sentence[0]) # 18 len(first_sentence[1]) # 18 first_token_in_first_sentence = first_sentence[1] first_token_in_first_sentence[1] # array([ 0.4805648 , 0.18369392, -0.28554988, ..., -0.01961522, # 1.0207764 , -0.67167974], dtype=float32) first_token_in_first_sentence[1].shape # (768,) ``` ## OOV There are three ways to handle oov, avg (default), sum, and last. This can be specified in encoding. ```python ... bert_embedding = BertEmbedding() bert_embedding(sentences, 'sum') ... ``` ## Available pre-trained BERT models | |book_corpus_wiki_en_uncased|book_corpus_wiki_en_cased|wiki_multilingual|wiki_multilingual_cased|wiki_cn| |---|---|---|---|---|---| |bert_12_768_12|✓|✓|✓|✓|✓| |bert_24_1024_16|x|✓|x|x|x| Example of using the large pre-trained BERT model from Google ```python from bert_embedding import BertEmbedding bert_embedding = BertEmbedding(model='bert_24_1024_16', dataset_name='book_corpus_wiki_en_cased') ``` Source: [gluonnlp](http://gluon-nlp.mxnet.io/model_zoo/bert/index.html) %prep %autosetup -n bert-embedding-1.0.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-bert-embedding -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.0.1-1 - Package Spec generated