%global _empty_manifest_terminate_build 0 Name: python-mean-average-precision Version: 2021.4.26.0 Release: 1 Summary: Mean Average Precision evaluator for object detection. License: MIT URL: https://github.com/bes-dev/mean_average_precision Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d0/c8/e0fa7f81b32e5e698d13ff19f2899a854728a60d8eae40b73b6d0dde7568/mean_average_precision-2021.4.26.0.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-pandas %description # mAP: Mean Average Precision for Object Detection A simple library for the evaluation of object detectors.

In practice, a **higher mAP** value indicates a **better performance** of your detector, given your ground-truth and set of classes. ## Install package ```bash pip install mean_average_precision ``` ## Install the latest version ```bash pip install --upgrade git+https://github.com/bes-dev/mean_average_precision.git ``` ## Example ```python import numpy as np from mean_average_precision import MetricBuilder # [xmin, ymin, xmax, ymax, class_id, difficult, crowd] gt = np.array([ [439, 157, 556, 241, 0, 0, 0], [437, 246, 518, 351, 0, 0, 0], [515, 306, 595, 375, 0, 0, 0], [407, 386, 531, 476, 0, 0, 0], [544, 419, 621, 476, 0, 0, 0], [609, 297, 636, 392, 0, 0, 0] ]) # [xmin, ymin, xmax, ymax, class_id, confidence] preds = np.array([ [429, 219, 528, 247, 0, 0.460851], [433, 260, 506, 336, 0, 0.269833], [518, 314, 603, 369, 0, 0.462608], [592, 310, 634, 388, 0, 0.298196], [403, 384, 517, 461, 0, 0.382881], [405, 429, 519, 470, 0, 0.369369], [433, 272, 499, 341, 0, 0.272826], [413, 390, 515, 459, 0, 0.619459] ]) # print list of available metrics print(MetricBuilder.get_metrics_list()) # create metric_fn metric_fn = MetricBuilder.build_evaluation_metric("map_2d", async_mode=True, num_classes=1) # add some samples to evaluation for i in range(10): metric_fn.add(preds, gt) # compute PASCAL VOC metric print(f"VOC PASCAL mAP: {metric_fn.value(iou_thresholds=0.5, recall_thresholds=np.arange(0., 1.1, 0.1))['mAP']}") # compute PASCAL VOC metric at the all points print(f"VOC PASCAL mAP in all points: {metric_fn.value(iou_thresholds=0.5)['mAP']}") # compute metric COCO metric print(f"COCO mAP: {metric_fn.value(iou_thresholds=np.arange(0.5, 1.0, 0.05), recall_thresholds=np.arange(0., 1.01, 0.01), mpolicy='soft')['mAP']}") ``` %package -n python3-mean-average-precision Summary: Mean Average Precision evaluator for object detection. Provides: python-mean-average-precision BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-mean-average-precision # mAP: Mean Average Precision for Object Detection A simple library for the evaluation of object detectors.

In practice, a **higher mAP** value indicates a **better performance** of your detector, given your ground-truth and set of classes. ## Install package ```bash pip install mean_average_precision ``` ## Install the latest version ```bash pip install --upgrade git+https://github.com/bes-dev/mean_average_precision.git ``` ## Example ```python import numpy as np from mean_average_precision import MetricBuilder # [xmin, ymin, xmax, ymax, class_id, difficult, crowd] gt = np.array([ [439, 157, 556, 241, 0, 0, 0], [437, 246, 518, 351, 0, 0, 0], [515, 306, 595, 375, 0, 0, 0], [407, 386, 531, 476, 0, 0, 0], [544, 419, 621, 476, 0, 0, 0], [609, 297, 636, 392, 0, 0, 0] ]) # [xmin, ymin, xmax, ymax, class_id, confidence] preds = np.array([ [429, 219, 528, 247, 0, 0.460851], [433, 260, 506, 336, 0, 0.269833], [518, 314, 603, 369, 0, 0.462608], [592, 310, 634, 388, 0, 0.298196], [403, 384, 517, 461, 0, 0.382881], [405, 429, 519, 470, 0, 0.369369], [433, 272, 499, 341, 0, 0.272826], [413, 390, 515, 459, 0, 0.619459] ]) # print list of available metrics print(MetricBuilder.get_metrics_list()) # create metric_fn metric_fn = MetricBuilder.build_evaluation_metric("map_2d", async_mode=True, num_classes=1) # add some samples to evaluation for i in range(10): metric_fn.add(preds, gt) # compute PASCAL VOC metric print(f"VOC PASCAL mAP: {metric_fn.value(iou_thresholds=0.5, recall_thresholds=np.arange(0., 1.1, 0.1))['mAP']}") # compute PASCAL VOC metric at the all points print(f"VOC PASCAL mAP in all points: {metric_fn.value(iou_thresholds=0.5)['mAP']}") # compute metric COCO metric print(f"COCO mAP: {metric_fn.value(iou_thresholds=np.arange(0.5, 1.0, 0.05), recall_thresholds=np.arange(0., 1.01, 0.01), mpolicy='soft')['mAP']}") ``` %package help Summary: Development documents and examples for mean-average-precision Provides: python3-mean-average-precision-doc %description help # mAP: Mean Average Precision for Object Detection A simple library for the evaluation of object detectors.

In practice, a **higher mAP** value indicates a **better performance** of your detector, given your ground-truth and set of classes. ## Install package ```bash pip install mean_average_precision ``` ## Install the latest version ```bash pip install --upgrade git+https://github.com/bes-dev/mean_average_precision.git ``` ## Example ```python import numpy as np from mean_average_precision import MetricBuilder # [xmin, ymin, xmax, ymax, class_id, difficult, crowd] gt = np.array([ [439, 157, 556, 241, 0, 0, 0], [437, 246, 518, 351, 0, 0, 0], [515, 306, 595, 375, 0, 0, 0], [407, 386, 531, 476, 0, 0, 0], [544, 419, 621, 476, 0, 0, 0], [609, 297, 636, 392, 0, 0, 0] ]) # [xmin, ymin, xmax, ymax, class_id, confidence] preds = np.array([ [429, 219, 528, 247, 0, 0.460851], [433, 260, 506, 336, 0, 0.269833], [518, 314, 603, 369, 0, 0.462608], [592, 310, 634, 388, 0, 0.298196], [403, 384, 517, 461, 0, 0.382881], [405, 429, 519, 470, 0, 0.369369], [433, 272, 499, 341, 0, 0.272826], [413, 390, 515, 459, 0, 0.619459] ]) # print list of available metrics print(MetricBuilder.get_metrics_list()) # create metric_fn metric_fn = MetricBuilder.build_evaluation_metric("map_2d", async_mode=True, num_classes=1) # add some samples to evaluation for i in range(10): metric_fn.add(preds, gt) # compute PASCAL VOC metric print(f"VOC PASCAL mAP: {metric_fn.value(iou_thresholds=0.5, recall_thresholds=np.arange(0., 1.1, 0.1))['mAP']}") # compute PASCAL VOC metric at the all points print(f"VOC PASCAL mAP in all points: {metric_fn.value(iou_thresholds=0.5)['mAP']}") # compute metric COCO metric print(f"COCO mAP: {metric_fn.value(iou_thresholds=np.arange(0.5, 1.0, 0.05), recall_thresholds=np.arange(0., 1.01, 0.01), mpolicy='soft')['mAP']}") ``` %prep %autosetup -n mean-average-precision-2021.4.26.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-mean-average-precision -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 2021.4.26.0-1 - Package Spec generated