%global _empty_manifest_terminate_build 0 Name: python-razdel Version: 0.5.0 Release: 1 Summary: Splits russian text into tokens, sentences, section. Rule-based License: MIT URL: https://github.com/natasha/razdel Source0: https://mirrors.nju.edu.cn/pypi/web/packages/70/ea/0151ae55bd26699487e668a865ef43e49409025c7464569beffe1a5789f0/razdel-0.5.0.tar.gz BuildArch: noarch %description <img src="https://github.com/natasha/natasha-logos/blob/master/razdel.svg">  [](https://codecov.io/gh/natasha/razdel) `razdel` — rule-based system for Russian sentence and word tokenization.. ## Usage ```python >>> from razdel import tokenize >>> tokens = list(tokenize('Кружка-термос на 0.5л (50/64 см³, 516;...)')) >>> tokens [Substring(0, 13, 'Кружка-термос'), Substring(14, 16, 'на'), Substring(17, 20, '0.5'), Substring(20, 21, 'л'), Substring(22, 23, '(') ...] >>> [_.text for _ in tokens] ['Кружка-термос', 'на', '0.5', 'л', '(', '50/64', 'см³', ',', '516', ';', '...', ')'] ``` ```python >>> from razdel import sentenize >>> text = ''' ... - "Так в чем же дело?" - "Не ра-ду-ют". ... И т. д. и т. п. В общем, вся газета ... ''' >>> list(sentenize(text)) [Substring(1, 23, '- "Так в чем же дело?"'), Substring(24, 40, '- "Не ра-ду-ют".'), Substring(41, 56, 'И т. д. и т. п.'), Substring(57, 76, 'В общем, вся газета')] ``` ## Installation `razdel` supports Python 3.5+ and PyPy 3. ```bash $ pip install razdel ``` ## Quality, performance <a name="evalualtion"></a> Unfortunately, there is no single correct way to split text into sentences and tokens. For example, one may split `«Как же так?! Захар...» — воскликнут Пронин.` into three sentences `["«Как же так?!", "Захар...»", "— воскликнут Пронин."]` while `razdel` splits it into two `["«Как же так?!", "Захар...» — воскликнут Пронин."]`. What would be the correct way to tokenizer `т.е.`? One may split in into `т.|е.`, `razdel` splits into `т|.|е|.`. `razdel` tries to mimic segmentation of these 4 datasets : <a href="https://github.com/natasha/corus#load_ud_syntag">SynTagRus</a>, <a href="https://github.com/natasha/corus#load_morphoru_corpora">OpenCorpora</a>, <a href="https://github.com/natasha/corus#load_morphoru_gicrya">GICRYA</a> and <a href="https://github.com/natasha/corus#load_morphoru_rnc">RNC</a>. These datasets mainly consist of news and fiction. `razdel` rules are optimized for these kinds of texts. Library may perform worse on other domains like social media, scientific articles, legal documents. We measure absolute number of errors. There are a lot of trivial cases in the tokenization task. For example, text `чуть-чуть?!` is not non-trivial, one may split it into `чуть|-|чуть|?|!` while the correct tokenization is `чуть-чуть|?!`, such examples are rare. Vast majority of cases are trivial, for example text `в 5 часов ...` is correctly tokenized even via Python native `str.split` into `в| |5| |часов| |...`. Due to the large number of trivial case overall quality of all segmenators is high, it is hard to compare differentiate between for examlpe 99.33%, 99.95% and 99.88%, so we report the absolute number of errors. `errors` — number of errors. For example, consider etalon segmentation is `что-то|?`, prediction is `что|-|то?`, then the number of errors is 3: 1 for missing split `то?` + 2 for extra splits `что|-|то`. `time` — total seconds taken. `spacy_tokenize`, `aatimofeev` and others a defined in <a href="https://github.com/natasha/naeval/blob/master/naeval/segment/models.py">naeval/segment/models.py</a>. Tables are computed in <a href="https://github.com/natasha/naeval/blob/master/scripts/segment/main.ipynb">segment/main.ipynb</a>. ### Tokens <!--- token ---> <table border="0" class="dataframe"> <thead> <tr> <th></th> <th colspan="2" halign="left">corpora</th> <th colspan="2" halign="left">syntag</th> <th colspan="2" halign="left">gicrya</th> <th colspan="2" halign="left">rnc</th> </tr> <tr> <th></th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> </tr> </thead> <tbody> <tr> <th>re.findall(\w+|\d+|\p+)</th> <td>4161</td> <td>0.5</td> <td>2660</td> <td>0.5</td> <td>2277</td> <td>0.4</td> <td>7606</td> <td>0.4</td> </tr> <tr> <th>spacy</th> <td>4388</td> <td>6.2</td> <td>2103</td> <td>5.8</td> <td><b>1740</b></td> <td>4.1</td> <td>4057</td> <td>3.9</td> </tr> <tr> <th>nltk.word_tokenize</th> <td>14245</td> <td>3.4</td> <td>60893</td> <td>3.3</td> <td>13496</td> <td>2.7</td> <td>41485</td> <td>2.9</td> </tr> <tr> <th>mystem</th> <td>4514</td> <td>5.0</td> <td>3153</td> <td>4.7</td> <td>2497</td> <td>3.7</td> <td><b>2028</b></td> <td>3.9</td> </tr> <tr> <th>mosestokenizer</th> <td><b>1886</b></td> <td><b>2.1</b></td> <td><b>1330</b></td> <td><b>1.9</b></td> <td>1796</td> <td><b>1.6</b></td> <td><b>2123</b></td> <td><b>1.7</b></td> </tr> <tr> <th>segtok.word_tokenize</th> <td>2772</td> <td><b>2.3</b></td> <td><b>1288</b></td> <td><b>2.3</b></td> <td>1759</td> <td><b>1.8</b></td> <td><b>1229</b></td> <td><b>1.8</b></td> </tr> <tr> <th>aatimofeev/spacy_russian_tokenizer</th> <td>2930</td> <td>48.7</td> <td><b>719</b></td> <td>51.1</td> <td><b>678</b></td> <td>39.5</td> <td>2681</td> <td>52.2</td> </tr> <tr> <th>koziev/rutokenizer</th> <td><b>2627</b></td> <td><b>1.1</b></td> <td>1386</td> <td><b>1.0</b></td> <td>2893</td> <td><b>0.8</b></td> <td>9411</td> <td><b>0.9</b></td> </tr> <tr> <th>razdel.tokenize</th> <td><b>1510</b></td> <td>2.9</td> <td>1483</td> <td>2.8</td> <td><b>322</b></td> <td>2.0</td> <td>2124</td> <td>2.2</td> </tr> </tbody> </table> <!--- token ---> ### Sentencies <!--- sent ---> <table border="0" class="dataframe"> <thead> <tr> <th></th> <th colspan="2" halign="left">corpora</th> <th colspan="2" halign="left">syntag</th> <th colspan="2" halign="left">gicrya</th> <th colspan="2" halign="left">rnc</th> </tr> <tr> <th></th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> </tr> </thead> <tbody> <tr> <th>re.split([.?!…])</th> <td>20456</td> <td>0.9</td> <td>6576</td> <td>0.6</td> <td>10084</td> <td>0.7</td> <td>23356</td> <td>1.0</td> </tr> <tr> <th>segtok.split_single</th> <td>19008</td> <td>17.8</td> <td>4422</td> <td>13.4</td> <td>159738</td> <td><b>1.1</b></td> <td>164218</td> <td><b>2.8</b></td> </tr> <tr> <th>mosestokenizer</th> <td>41666</td> <td><b>8.9</b></td> <td>22082</td> <td><b>5.7</b></td> <td>12663</td> <td>6.4</td> <td>50560</td> <td><b>7.4</b></td> </tr> <tr> <th>nltk.sent_tokenize</th> <td><b>16420</b></td> <td><b>10.1</b></td> <td><b>4350</b></td> <td><b>5.3</b></td> <td><b>7074</b></td> <td><b>5.6</b></td> <td><b>32534</b></td> <td>8.9</td> </tr> <tr> <th>deeppavlov/rusenttokenize</th> <td><b>10192</b></td> <td>10.9</td> <td><b>1210</b></td> <td>7.9</td> <td><b>8910</b></td> <td>6.8</td> <td><b>21410</b></td> <td><b>7.0</b></td> </tr> <tr> <th>razdel.sentenize</th> <td><b>9274</b></td> <td><b>6.1</b></td> <td><b>824</b></td> <td><b>3.9</b></td> <td><b>11414</b></td> <td><b>4.5</b></td> <td><b>10594</b></td> <td>7.5</td> </tr> </tbody> </table> <!--- sent ---> ## Support - Chat — https://telegram.me/natural_language_processing - Issues — https://github.com/natasha/razdel/issues ## Development Test: ```bash pip install -e . pip install -r requirements/ci.txt make test make int # 2000 integration tests ``` Package: ```bash make version git push git push --tags make clean wheel upload ``` `mystem` errors on `syntag`: ```bash # see naeval/data cat syntag_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl diff --show moses_tokenize | less ``` Non-trivial token tests: ```bash pv data/*_tokens.txt | razdel-ctl gen --recall | razdel-ctl diff space_tokenize > tests.txt pv data/*_tokens.txt | razdel-ctl gen --precision | razdel-ctl diff re_tokenize >> tests.txt ``` Update integration tests: ```bash cd razdel/tests/data/ pv sents.txt | razdel-ctl up sentenize > t; mv t sents.txt ``` `razdel` and `moses` diff: ```bash cat data/*_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl up tokenize | razdel-ctl diff moses_tokenize | less ``` `razdel` performance: ```bash cat data/*_tokens.txt | razdel-ctl sample 10000 | pv -l | razdel-ctl gen | razdel-ctl diff tokenize | wc -l ``` %package -n python3-razdel Summary: Splits russian text into tokens, sentences, section. Rule-based Provides: python-razdel BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-razdel <img src="https://github.com/natasha/natasha-logos/blob/master/razdel.svg">  [](https://codecov.io/gh/natasha/razdel) `razdel` — rule-based system for Russian sentence and word tokenization.. ## Usage ```python >>> from razdel import tokenize >>> tokens = list(tokenize('Кружка-термос на 0.5л (50/64 см³, 516;...)')) >>> tokens [Substring(0, 13, 'Кружка-термос'), Substring(14, 16, 'на'), Substring(17, 20, '0.5'), Substring(20, 21, 'л'), Substring(22, 23, '(') ...] >>> [_.text for _ in tokens] ['Кружка-термос', 'на', '0.5', 'л', '(', '50/64', 'см³', ',', '516', ';', '...', ')'] ``` ```python >>> from razdel import sentenize >>> text = ''' ... - "Так в чем же дело?" - "Не ра-ду-ют". ... И т. д. и т. п. В общем, вся газета ... ''' >>> list(sentenize(text)) [Substring(1, 23, '- "Так в чем же дело?"'), Substring(24, 40, '- "Не ра-ду-ют".'), Substring(41, 56, 'И т. д. и т. п.'), Substring(57, 76, 'В общем, вся газета')] ``` ## Installation `razdel` supports Python 3.5+ and PyPy 3. ```bash $ pip install razdel ``` ## Quality, performance <a name="evalualtion"></a> Unfortunately, there is no single correct way to split text into sentences and tokens. For example, one may split `«Как же так?! Захар...» — воскликнут Пронин.` into three sentences `["«Как же так?!", "Захар...»", "— воскликнут Пронин."]` while `razdel` splits it into two `["«Как же так?!", "Захар...» — воскликнут Пронин."]`. What would be the correct way to tokenizer `т.е.`? One may split in into `т.|е.`, `razdel` splits into `т|.|е|.`. `razdel` tries to mimic segmentation of these 4 datasets : <a href="https://github.com/natasha/corus#load_ud_syntag">SynTagRus</a>, <a href="https://github.com/natasha/corus#load_morphoru_corpora">OpenCorpora</a>, <a href="https://github.com/natasha/corus#load_morphoru_gicrya">GICRYA</a> and <a href="https://github.com/natasha/corus#load_morphoru_rnc">RNC</a>. These datasets mainly consist of news and fiction. `razdel` rules are optimized for these kinds of texts. Library may perform worse on other domains like social media, scientific articles, legal documents. We measure absolute number of errors. There are a lot of trivial cases in the tokenization task. For example, text `чуть-чуть?!` is not non-trivial, one may split it into `чуть|-|чуть|?|!` while the correct tokenization is `чуть-чуть|?!`, such examples are rare. Vast majority of cases are trivial, for example text `в 5 часов ...` is correctly tokenized even via Python native `str.split` into `в| |5| |часов| |...`. Due to the large number of trivial case overall quality of all segmenators is high, it is hard to compare differentiate between for examlpe 99.33%, 99.95% and 99.88%, so we report the absolute number of errors. `errors` — number of errors. For example, consider etalon segmentation is `что-то|?`, prediction is `что|-|то?`, then the number of errors is 3: 1 for missing split `то?` + 2 for extra splits `что|-|то`. `time` — total seconds taken. `spacy_tokenize`, `aatimofeev` and others a defined in <a href="https://github.com/natasha/naeval/blob/master/naeval/segment/models.py">naeval/segment/models.py</a>. Tables are computed in <a href="https://github.com/natasha/naeval/blob/master/scripts/segment/main.ipynb">segment/main.ipynb</a>. ### Tokens <!--- token ---> <table border="0" class="dataframe"> <thead> <tr> <th></th> <th colspan="2" halign="left">corpora</th> <th colspan="2" halign="left">syntag</th> <th colspan="2" halign="left">gicrya</th> <th colspan="2" halign="left">rnc</th> </tr> <tr> <th></th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> </tr> </thead> <tbody> <tr> <th>re.findall(\w+|\d+|\p+)</th> <td>4161</td> <td>0.5</td> <td>2660</td> <td>0.5</td> <td>2277</td> <td>0.4</td> <td>7606</td> <td>0.4</td> </tr> <tr> <th>spacy</th> <td>4388</td> <td>6.2</td> <td>2103</td> <td>5.8</td> <td><b>1740</b></td> <td>4.1</td> <td>4057</td> <td>3.9</td> </tr> <tr> <th>nltk.word_tokenize</th> <td>14245</td> <td>3.4</td> <td>60893</td> <td>3.3</td> <td>13496</td> <td>2.7</td> <td>41485</td> <td>2.9</td> </tr> <tr> <th>mystem</th> <td>4514</td> <td>5.0</td> <td>3153</td> <td>4.7</td> <td>2497</td> <td>3.7</td> <td><b>2028</b></td> <td>3.9</td> </tr> <tr> <th>mosestokenizer</th> <td><b>1886</b></td> <td><b>2.1</b></td> <td><b>1330</b></td> <td><b>1.9</b></td> <td>1796</td> <td><b>1.6</b></td> <td><b>2123</b></td> <td><b>1.7</b></td> </tr> <tr> <th>segtok.word_tokenize</th> <td>2772</td> <td><b>2.3</b></td> <td><b>1288</b></td> <td><b>2.3</b></td> <td>1759</td> <td><b>1.8</b></td> <td><b>1229</b></td> <td><b>1.8</b></td> </tr> <tr> <th>aatimofeev/spacy_russian_tokenizer</th> <td>2930</td> <td>48.7</td> <td><b>719</b></td> <td>51.1</td> <td><b>678</b></td> <td>39.5</td> <td>2681</td> <td>52.2</td> </tr> <tr> <th>koziev/rutokenizer</th> <td><b>2627</b></td> <td><b>1.1</b></td> <td>1386</td> <td><b>1.0</b></td> <td>2893</td> <td><b>0.8</b></td> <td>9411</td> <td><b>0.9</b></td> </tr> <tr> <th>razdel.tokenize</th> <td><b>1510</b></td> <td>2.9</td> <td>1483</td> <td>2.8</td> <td><b>322</b></td> <td>2.0</td> <td>2124</td> <td>2.2</td> </tr> </tbody> </table> <!--- token ---> ### Sentencies <!--- sent ---> <table border="0" class="dataframe"> <thead> <tr> <th></th> <th colspan="2" halign="left">corpora</th> <th colspan="2" halign="left">syntag</th> <th colspan="2" halign="left">gicrya</th> <th colspan="2" halign="left">rnc</th> </tr> <tr> <th></th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> </tr> </thead> <tbody> <tr> <th>re.split([.?!…])</th> <td>20456</td> <td>0.9</td> <td>6576</td> <td>0.6</td> <td>10084</td> <td>0.7</td> <td>23356</td> <td>1.0</td> </tr> <tr> <th>segtok.split_single</th> <td>19008</td> <td>17.8</td> <td>4422</td> <td>13.4</td> <td>159738</td> <td><b>1.1</b></td> <td>164218</td> <td><b>2.8</b></td> </tr> <tr> <th>mosestokenizer</th> <td>41666</td> <td><b>8.9</b></td> <td>22082</td> <td><b>5.7</b></td> <td>12663</td> <td>6.4</td> <td>50560</td> <td><b>7.4</b></td> </tr> <tr> <th>nltk.sent_tokenize</th> <td><b>16420</b></td> <td><b>10.1</b></td> <td><b>4350</b></td> <td><b>5.3</b></td> <td><b>7074</b></td> <td><b>5.6</b></td> <td><b>32534</b></td> <td>8.9</td> </tr> <tr> <th>deeppavlov/rusenttokenize</th> <td><b>10192</b></td> <td>10.9</td> <td><b>1210</b></td> <td>7.9</td> <td><b>8910</b></td> <td>6.8</td> <td><b>21410</b></td> <td><b>7.0</b></td> </tr> <tr> <th>razdel.sentenize</th> <td><b>9274</b></td> <td><b>6.1</b></td> <td><b>824</b></td> <td><b>3.9</b></td> <td><b>11414</b></td> <td><b>4.5</b></td> <td><b>10594</b></td> <td>7.5</td> </tr> </tbody> </table> <!--- sent ---> ## Support - Chat — https://telegram.me/natural_language_processing - Issues — https://github.com/natasha/razdel/issues ## Development Test: ```bash pip install -e . pip install -r requirements/ci.txt make test make int # 2000 integration tests ``` Package: ```bash make version git push git push --tags make clean wheel upload ``` `mystem` errors on `syntag`: ```bash # see naeval/data cat syntag_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl diff --show moses_tokenize | less ``` Non-trivial token tests: ```bash pv data/*_tokens.txt | razdel-ctl gen --recall | razdel-ctl diff space_tokenize > tests.txt pv data/*_tokens.txt | razdel-ctl gen --precision | razdel-ctl diff re_tokenize >> tests.txt ``` Update integration tests: ```bash cd razdel/tests/data/ pv sents.txt | razdel-ctl up sentenize > t; mv t sents.txt ``` `razdel` and `moses` diff: ```bash cat data/*_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl up tokenize | razdel-ctl diff moses_tokenize | less ``` `razdel` performance: ```bash cat data/*_tokens.txt | razdel-ctl sample 10000 | pv -l | razdel-ctl gen | razdel-ctl diff tokenize | wc -l ``` %package help Summary: Development documents and examples for razdel Provides: python3-razdel-doc %description help <img src="https://github.com/natasha/natasha-logos/blob/master/razdel.svg">  [](https://codecov.io/gh/natasha/razdel) `razdel` — rule-based system for Russian sentence and word tokenization.. ## Usage ```python >>> from razdel import tokenize >>> tokens = list(tokenize('Кружка-термос на 0.5л (50/64 см³, 516;...)')) >>> tokens [Substring(0, 13, 'Кружка-термос'), Substring(14, 16, 'на'), Substring(17, 20, '0.5'), Substring(20, 21, 'л'), Substring(22, 23, '(') ...] >>> [_.text for _ in tokens] ['Кружка-термос', 'на', '0.5', 'л', '(', '50/64', 'см³', ',', '516', ';', '...', ')'] ``` ```python >>> from razdel import sentenize >>> text = ''' ... - "Так в чем же дело?" - "Не ра-ду-ют". ... И т. д. и т. п. В общем, вся газета ... ''' >>> list(sentenize(text)) [Substring(1, 23, '- "Так в чем же дело?"'), Substring(24, 40, '- "Не ра-ду-ют".'), Substring(41, 56, 'И т. д. и т. п.'), Substring(57, 76, 'В общем, вся газета')] ``` ## Installation `razdel` supports Python 3.5+ and PyPy 3. ```bash $ pip install razdel ``` ## Quality, performance <a name="evalualtion"></a> Unfortunately, there is no single correct way to split text into sentences and tokens. For example, one may split `«Как же так?! Захар...» — воскликнут Пронин.` into three sentences `["«Как же так?!", "Захар...»", "— воскликнут Пронин."]` while `razdel` splits it into two `["«Как же так?!", "Захар...» — воскликнут Пронин."]`. What would be the correct way to tokenizer `т.е.`? One may split in into `т.|е.`, `razdel` splits into `т|.|е|.`. `razdel` tries to mimic segmentation of these 4 datasets : <a href="https://github.com/natasha/corus#load_ud_syntag">SynTagRus</a>, <a href="https://github.com/natasha/corus#load_morphoru_corpora">OpenCorpora</a>, <a href="https://github.com/natasha/corus#load_morphoru_gicrya">GICRYA</a> and <a href="https://github.com/natasha/corus#load_morphoru_rnc">RNC</a>. These datasets mainly consist of news and fiction. `razdel` rules are optimized for these kinds of texts. Library may perform worse on other domains like social media, scientific articles, legal documents. We measure absolute number of errors. There are a lot of trivial cases in the tokenization task. For example, text `чуть-чуть?!` is not non-trivial, one may split it into `чуть|-|чуть|?|!` while the correct tokenization is `чуть-чуть|?!`, such examples are rare. Vast majority of cases are trivial, for example text `в 5 часов ...` is correctly tokenized even via Python native `str.split` into `в| |5| |часов| |...`. Due to the large number of trivial case overall quality of all segmenators is high, it is hard to compare differentiate between for examlpe 99.33%, 99.95% and 99.88%, so we report the absolute number of errors. `errors` — number of errors. For example, consider etalon segmentation is `что-то|?`, prediction is `что|-|то?`, then the number of errors is 3: 1 for missing split `то?` + 2 for extra splits `что|-|то`. `time` — total seconds taken. `spacy_tokenize`, `aatimofeev` and others a defined in <a href="https://github.com/natasha/naeval/blob/master/naeval/segment/models.py">naeval/segment/models.py</a>. Tables are computed in <a href="https://github.com/natasha/naeval/blob/master/scripts/segment/main.ipynb">segment/main.ipynb</a>. ### Tokens <!--- token ---> <table border="0" class="dataframe"> <thead> <tr> <th></th> <th colspan="2" halign="left">corpora</th> <th colspan="2" halign="left">syntag</th> <th colspan="2" halign="left">gicrya</th> <th colspan="2" halign="left">rnc</th> </tr> <tr> <th></th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> </tr> </thead> <tbody> <tr> <th>re.findall(\w+|\d+|\p+)</th> <td>4161</td> <td>0.5</td> <td>2660</td> <td>0.5</td> <td>2277</td> <td>0.4</td> <td>7606</td> <td>0.4</td> </tr> <tr> <th>spacy</th> <td>4388</td> <td>6.2</td> <td>2103</td> <td>5.8</td> <td><b>1740</b></td> <td>4.1</td> <td>4057</td> <td>3.9</td> </tr> <tr> <th>nltk.word_tokenize</th> <td>14245</td> <td>3.4</td> <td>60893</td> <td>3.3</td> <td>13496</td> <td>2.7</td> <td>41485</td> <td>2.9</td> </tr> <tr> <th>mystem</th> <td>4514</td> <td>5.0</td> <td>3153</td> <td>4.7</td> <td>2497</td> <td>3.7</td> <td><b>2028</b></td> <td>3.9</td> </tr> <tr> <th>mosestokenizer</th> <td><b>1886</b></td> <td><b>2.1</b></td> <td><b>1330</b></td> <td><b>1.9</b></td> <td>1796</td> <td><b>1.6</b></td> <td><b>2123</b></td> <td><b>1.7</b></td> </tr> <tr> <th>segtok.word_tokenize</th> <td>2772</td> <td><b>2.3</b></td> <td><b>1288</b></td> <td><b>2.3</b></td> <td>1759</td> <td><b>1.8</b></td> <td><b>1229</b></td> <td><b>1.8</b></td> </tr> <tr> <th>aatimofeev/spacy_russian_tokenizer</th> <td>2930</td> <td>48.7</td> <td><b>719</b></td> <td>51.1</td> <td><b>678</b></td> <td>39.5</td> <td>2681</td> <td>52.2</td> </tr> <tr> <th>koziev/rutokenizer</th> <td><b>2627</b></td> <td><b>1.1</b></td> <td>1386</td> <td><b>1.0</b></td> <td>2893</td> <td><b>0.8</b></td> <td>9411</td> <td><b>0.9</b></td> </tr> <tr> <th>razdel.tokenize</th> <td><b>1510</b></td> <td>2.9</td> <td>1483</td> <td>2.8</td> <td><b>322</b></td> <td>2.0</td> <td>2124</td> <td>2.2</td> </tr> </tbody> </table> <!--- token ---> ### Sentencies <!--- sent ---> <table border="0" class="dataframe"> <thead> <tr> <th></th> <th colspan="2" halign="left">corpora</th> <th colspan="2" halign="left">syntag</th> <th colspan="2" halign="left">gicrya</th> <th colspan="2" halign="left">rnc</th> </tr> <tr> <th></th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> <th>errors</th> <th>time</th> </tr> </thead> <tbody> <tr> <th>re.split([.?!…])</th> <td>20456</td> <td>0.9</td> <td>6576</td> <td>0.6</td> <td>10084</td> <td>0.7</td> <td>23356</td> <td>1.0</td> </tr> <tr> <th>segtok.split_single</th> <td>19008</td> <td>17.8</td> <td>4422</td> <td>13.4</td> <td>159738</td> <td><b>1.1</b></td> <td>164218</td> <td><b>2.8</b></td> </tr> <tr> <th>mosestokenizer</th> <td>41666</td> <td><b>8.9</b></td> <td>22082</td> <td><b>5.7</b></td> <td>12663</td> <td>6.4</td> <td>50560</td> <td><b>7.4</b></td> </tr> <tr> <th>nltk.sent_tokenize</th> <td><b>16420</b></td> <td><b>10.1</b></td> <td><b>4350</b></td> <td><b>5.3</b></td> <td><b>7074</b></td> <td><b>5.6</b></td> <td><b>32534</b></td> <td>8.9</td> </tr> <tr> <th>deeppavlov/rusenttokenize</th> <td><b>10192</b></td> <td>10.9</td> <td><b>1210</b></td> <td>7.9</td> <td><b>8910</b></td> <td>6.8</td> <td><b>21410</b></td> <td><b>7.0</b></td> </tr> <tr> <th>razdel.sentenize</th> <td><b>9274</b></td> <td><b>6.1</b></td> <td><b>824</b></td> <td><b>3.9</b></td> <td><b>11414</b></td> <td><b>4.5</b></td> <td><b>10594</b></td> <td>7.5</td> </tr> </tbody> </table> <!--- sent ---> ## Support - Chat — https://telegram.me/natural_language_processing - Issues — https://github.com/natasha/razdel/issues ## Development Test: ```bash pip install -e . pip install -r requirements/ci.txt make test make int # 2000 integration tests ``` Package: ```bash make version git push git push --tags make clean wheel upload ``` `mystem` errors on `syntag`: ```bash # see naeval/data cat syntag_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl diff --show moses_tokenize | less ``` Non-trivial token tests: ```bash pv data/*_tokens.txt | razdel-ctl gen --recall | razdel-ctl diff space_tokenize > tests.txt pv data/*_tokens.txt | razdel-ctl gen --precision | razdel-ctl diff re_tokenize >> tests.txt ``` Update integration tests: ```bash cd razdel/tests/data/ pv sents.txt | razdel-ctl up sentenize > t; mv t sents.txt ``` `razdel` and `moses` diff: ```bash cat data/*_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl up tokenize | razdel-ctl diff moses_tokenize | less ``` `razdel` performance: ```bash cat data/*_tokens.txt | razdel-ctl sample 10000 | pv -l | razdel-ctl gen | razdel-ctl diff tokenize | wc -l ``` %prep %autosetup -n razdel-0.5.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-razdel -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0-1 - Package Spec generated