%global _empty_manifest_terminate_build 0 Name: python-vectorhub-nightly Version: 1.2.0.2021.6.2.1.17.47.427274 Release: 1 Summary: One liner to encode data into vectors with state-of-the-art models using tensorflow, pytorch and other open source libraries. Word2Vec, Image2Vec, BERT, etc License: Apache URL: https://github.com/vector-ai/vectorhub Source0: https://mirrors.nju.edu.cn/pypi/web/packages/41/0f/f08cdcfae334382a781321d3903ebb34b6c97a04efc5036e8b34731a6d11/vectorhub-nightly-1.2.0.2021.6.2.1.17.47.427274.tar.gz BuildArch: noarch Requires: python3-PyYAML Requires: python3-requests Requires: python3-numpy Requires: python3-vectorai Requires: python3-Pillow Requires: python3-PyYAML Requires: python3-appdirs Requires: python3-mtcnn Requires: python3-transformers Requires: python3-PyYAML Requires: python3-scikit-image Requires: python3-Pillow Requires: python3-tf-models-official Requires: python3-tensorflow-text Requires: python3-vectorai Requires: python3-fastai Requires: python3-tensorflow-hub Requires: python3-tensorflow Requires: python3-opencv-python Requires: python3-sphinx-rtd-theme Requires: python3-imageio Requires: python3-soundfile Requires: python3-sentence-transformers Requires: python3-requests Requires: python3-fairseq Requires: python3-moviepy Requires: python3-pytest Requires: python3-bert-for-tf2 Requires: python3-clip-by-openai Requires: python3-numpy Requires: python3-torch Requires: python3-librosa Requires: python3-appdirs Requires: python3-librosa Requires: python3-bert-for-tf2 Requires: python3-scikit-image Requires: python3-opencv-python Requires: python3-clip-by-openai Requires: python3-Pillow Requires: python3-imageio Requires: python3-clip-by-openai Requires: python3-PyYAML Requires: python3-requests Requires: python3-numpy Requires: python3-vectorai Requires: python3-fairseq Requires: python3-torch Requires: python3-soundfile Requires: python3-tensorflow Requires: python3-tensorflow-hub Requires: python3-librosa Requires: python3-transformers Requires: python3-torch Requires: python3-scikit-image Requires: python3-imageio Requires: python3-opencv-python Requires: python3-fastai Requires: python3-torch Requires: python3-appdirs Requires: python3-mtcnn Requires: python3-opencv-python Requires: python3-tensorflow Requires: python3-Pillow Requires: python3-scikit-image Requires: python3-imageio Requires: python3-tensorflow Requires: python3-tensorflow-hub Requires: python3-torch Requires: python3-sentence-transformers Requires: python3-transformers Requires: python3-tensorflow Requires: python3-tensorflow-text Requires: python3-tensorflow-hub Requires: python3-tensorflow Requires: python3-bert-for-tf2 Requires: python3-tf-models-official Requires: python3-bert-for-tf2 Requires: python3-tensorflow-hub Requires: python3-tensorflow Requires: python3-tf-models-official Requires: python3-transformers Requires: python3-torch Requires: python3-opencv-python Requires: python3-moviepy Requires: python3-fairseq Requires: python3-fastai Requires: python3-imageio Requires: python3-librosa Requires: python3-moviepy Requires: python3-mtcnn Requires: python3-numpy Requires: python3-opencv-python Requires: python3-pytest Requires: python3-requests Requires: python3-scikit-image Requires: python3-sentence-transformers Requires: python3-soundfile Requires: python3-sphinx-rtd-theme Requires: python3-tensorflow Requires: python3-tensorflow-hub Requires: python3-tensorflow-text Requires: python3-pytest Requires: python3-sphinx-rtd-theme Requires: python3-tf-models-official Requires: python3-torch Requires: python3-transformers Requires: python3-vectorai %description


There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily. Vector Hub provides: - A low barrier of entry for practitioners (using common methods) - Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code - Retrieve and find information about a model - An easy way to handle dependencies easily for different models - Universal format of installation and encoding (using a simple `encode` method). In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our `encode` method. There are thousands of _____2Vec models across different use cases/domains. Vectorhub allows people to aggregate their work and share it with the community. %package -n python3-vectorhub-nightly Summary: One liner to encode data into vectors with state-of-the-art models using tensorflow, pytorch and other open source libraries. Word2Vec, Image2Vec, BERT, etc Provides: python-vectorhub-nightly BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-vectorhub-nightly


There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily. Vector Hub provides: - A low barrier of entry for practitioners (using common methods) - Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code - Retrieve and find information about a model - An easy way to handle dependencies easily for different models - Universal format of installation and encoding (using a simple `encode` method). In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our `encode` method. There are thousands of _____2Vec models across different use cases/domains. Vectorhub allows people to aggregate their work and share it with the community. %package help Summary: Development documents and examples for vectorhub-nightly Provides: python3-vectorhub-nightly-doc %description help


There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily. Vector Hub provides: - A low barrier of entry for practitioners (using common methods) - Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code - Retrieve and find information about a model - An easy way to handle dependencies easily for different models - Universal format of installation and encoding (using a simple `encode` method). In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our `encode` method. There are thousands of _____2Vec models across different use cases/domains. Vectorhub allows people to aggregate their work and share it with the community. %prep %autosetup -n vectorhub-nightly-1.2.0.2021.6.2.1.17.47.427274 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-vectorhub-nightly -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.2.0.2021.6.2.1.17.47.427274-1 - Package Spec generated