%global _empty_manifest_terminate_build 0 Name: python-dpmmpython-trax Version: 0.1.5 Release: 1 Summary: Python wrapper for DPMMSubClusters julia package License: MIT URL: https://github.com/dinarior/dpmmpython_trax Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/55/34b8dd6097c6c466d6b71f07a556bcbe997bb49a74b5e38424b211c4ba3d/dpmmpython_trax-0.1.5.tar.gz BuildArch: noarch Requires: python3-julia Requires: python3-wget Requires: python3-numpy Requires: python3-numpy Requires: python3-ipython Requires: python3-pytest Requires: python3-mock %description

DPGMM SubClusters 2d example

## DPMMSubClusters This package is a Python wrapper for the [DPMMSubClusters.jl](https://github.com/BGU-CS-VIL/DPMMSubClusters.jl) Julia package.
### Motivation Working on a subset of 100K images from ImageNet, containing 79 classes, we have created embeddings using [SWAV](https://github.com/facebookresearch/swav), and reduced the dimension to 128 using PCA. We have compared our method with the popular scikit-learn [GMM](https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html) and [DPGMM](https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html) with the following results:

| Method | Timing (sec) | NMI (higher is better) | |-----------------------------------------------------|--------------|------------------------| | *Scikit-learn's GMM* (using EM, and given the True K) | 2523 | 0.695 | | *Scikit-learn's DPGMM* | 6108 | 0.683 | | DPMMpython | 475 | 0.705 |

### Installation ``` pip install dpmmpython ``` If you already have Julia installed, install [PyJulia](https://github.com/JuliaPy/pyjulia) and add the package `DPMMSubClusters` to your julia installation.

Make sure Julia path is configured correctly, e.g. you should be able to run julia by typing `julia` from the terminal, unless configured properly, PyJulia wont work. **Installation Shortcut for Ubuntu distributions**
If you do not have Julia installed, or wish to create a clean installation for the purpose of using this package. after installing (with pip), do the following: ``` import dpmmpython dpmmpython.install() ``` Optional arguments are `install(julia_download_path = 'https://julialang-s3.julialang.org/bin/linux/x64/1.4/julia-1.4.0-linux-x86_64.tar.gz', julia_target_path = None)`, where the former specify the julia download file, and the latter the installation path, if the installation path is not specified, `$HOME$/julia` will be used.
As the `install()` command edit your `.bashrc` path, before using the pacakge, the terminal should either be reset, or modify the current environment according to the julia path you specified (`$HOME$/julia/julia-1.4.0/bin` by default). ### Usage Example: ``` from dpmmpython.dpmmwrapper import DPMMPython from dpmmpython.priors import niw import numpy as np data,gt = DPMMPython.generate_gaussian_data(10000, 2, 10, 100.0) prior = niw(1,np.zeros(2),4,np.eye(2)) labels,_,sub_labels= DPMMPython.fit(data,100,prior = prior,verbose = True, gt = gt) ``` ``` Iteration: 1 || Clusters count: 1 || Log posterior: -71190.14226686998 || Vi score: 1.990707323192506 || NMI score: 6.69243345834295e-16 || Iter Time:0.004499912261962891 || Total time:0.004499912261962891 Iteration: 2 || Clusters count: 1 || Log posterior: -71190.14226686998 || Vi score: 1.990707323192506 || NMI score: 6.69243345834295e-16 || Iter Time:0.0038819313049316406 || Total time:0.008381843566894531 ... Iteration: 98 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.015907764434814453 || Total time:0.5749104022979736 Iteration: 99 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.01072382926940918 || Total time:0.5856342315673828 Iteration: 100 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.010260820388793945 || Total time:0.5958950519561768 ``` You can modify the number of processes by using `DPMMPython.add_procs(procs_count)`, note that you can only scale it upwards. #### Additional Examples: [Clustering](https://nbviewer.jupyter.org/github/BGU-CS-VIL/dpmmpython/blob/master/examples/clustering_example.ipynb)
[Multi-Process](https://nbviewer.jupyter.org/github/BGU-CS-VIL/dpmmpython/blob/master/examples/multi_process.ipynb) #### Python 3.8 Due to recent issue with the package used as interface between Julia and Python https://github.com/JuliaPy/pyjulia/issues/425 , there might be problems working with Python >= 3.8. ### Misc For any questions: dinari@post.bgu.ac.il Contributions, feature requests, suggestion etc.. are welcomed. If you use this code for your work, please cite the following: ``` @inproceedings{dinari2019distributed, title={Distributed MCMC Inference in Dirichlet Process Mixture Models Using Julia}, author={Dinari, Or and Yu, Angel and Freifeld, Oren and Fisher III, John W}, booktitle={2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)}, pages={518--525}, year={2019} } ``` %package -n python3-dpmmpython-trax Summary: Python wrapper for DPMMSubClusters julia package Provides: python-dpmmpython-trax BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-dpmmpython-trax

DPGMM SubClusters 2d example

## DPMMSubClusters This package is a Python wrapper for the [DPMMSubClusters.jl](https://github.com/BGU-CS-VIL/DPMMSubClusters.jl) Julia package.
### Motivation Working on a subset of 100K images from ImageNet, containing 79 classes, we have created embeddings using [SWAV](https://github.com/facebookresearch/swav), and reduced the dimension to 128 using PCA. We have compared our method with the popular scikit-learn [GMM](https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html) and [DPGMM](https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html) with the following results:

| Method | Timing (sec) | NMI (higher is better) | |-----------------------------------------------------|--------------|------------------------| | *Scikit-learn's GMM* (using EM, and given the True K) | 2523 | 0.695 | | *Scikit-learn's DPGMM* | 6108 | 0.683 | | DPMMpython | 475 | 0.705 |

### Installation ``` pip install dpmmpython ``` If you already have Julia installed, install [PyJulia](https://github.com/JuliaPy/pyjulia) and add the package `DPMMSubClusters` to your julia installation.

Make sure Julia path is configured correctly, e.g. you should be able to run julia by typing `julia` from the terminal, unless configured properly, PyJulia wont work. **Installation Shortcut for Ubuntu distributions**
If you do not have Julia installed, or wish to create a clean installation for the purpose of using this package. after installing (with pip), do the following: ``` import dpmmpython dpmmpython.install() ``` Optional arguments are `install(julia_download_path = 'https://julialang-s3.julialang.org/bin/linux/x64/1.4/julia-1.4.0-linux-x86_64.tar.gz', julia_target_path = None)`, where the former specify the julia download file, and the latter the installation path, if the installation path is not specified, `$HOME$/julia` will be used.
As the `install()` command edit your `.bashrc` path, before using the pacakge, the terminal should either be reset, or modify the current environment according to the julia path you specified (`$HOME$/julia/julia-1.4.0/bin` by default). ### Usage Example: ``` from dpmmpython.dpmmwrapper import DPMMPython from dpmmpython.priors import niw import numpy as np data,gt = DPMMPython.generate_gaussian_data(10000, 2, 10, 100.0) prior = niw(1,np.zeros(2),4,np.eye(2)) labels,_,sub_labels= DPMMPython.fit(data,100,prior = prior,verbose = True, gt = gt) ``` ``` Iteration: 1 || Clusters count: 1 || Log posterior: -71190.14226686998 || Vi score: 1.990707323192506 || NMI score: 6.69243345834295e-16 || Iter Time:0.004499912261962891 || Total time:0.004499912261962891 Iteration: 2 || Clusters count: 1 || Log posterior: -71190.14226686998 || Vi score: 1.990707323192506 || NMI score: 6.69243345834295e-16 || Iter Time:0.0038819313049316406 || Total time:0.008381843566894531 ... Iteration: 98 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.015907764434814453 || Total time:0.5749104022979736 Iteration: 99 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.01072382926940918 || Total time:0.5856342315673828 Iteration: 100 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.010260820388793945 || Total time:0.5958950519561768 ``` You can modify the number of processes by using `DPMMPython.add_procs(procs_count)`, note that you can only scale it upwards. #### Additional Examples: [Clustering](https://nbviewer.jupyter.org/github/BGU-CS-VIL/dpmmpython/blob/master/examples/clustering_example.ipynb)
[Multi-Process](https://nbviewer.jupyter.org/github/BGU-CS-VIL/dpmmpython/blob/master/examples/multi_process.ipynb) #### Python 3.8 Due to recent issue with the package used as interface between Julia and Python https://github.com/JuliaPy/pyjulia/issues/425 , there might be problems working with Python >= 3.8. ### Misc For any questions: dinari@post.bgu.ac.il Contributions, feature requests, suggestion etc.. are welcomed. If you use this code for your work, please cite the following: ``` @inproceedings{dinari2019distributed, title={Distributed MCMC Inference in Dirichlet Process Mixture Models Using Julia}, author={Dinari, Or and Yu, Angel and Freifeld, Oren and Fisher III, John W}, booktitle={2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)}, pages={518--525}, year={2019} } ``` %package help Summary: Development documents and examples for dpmmpython-trax Provides: python3-dpmmpython-trax-doc %description help

DPGMM SubClusters 2d example

## DPMMSubClusters This package is a Python wrapper for the [DPMMSubClusters.jl](https://github.com/BGU-CS-VIL/DPMMSubClusters.jl) Julia package.
### Motivation Working on a subset of 100K images from ImageNet, containing 79 classes, we have created embeddings using [SWAV](https://github.com/facebookresearch/swav), and reduced the dimension to 128 using PCA. We have compared our method with the popular scikit-learn [GMM](https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html) and [DPGMM](https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html) with the following results:

| Method | Timing (sec) | NMI (higher is better) | |-----------------------------------------------------|--------------|------------------------| | *Scikit-learn's GMM* (using EM, and given the True K) | 2523 | 0.695 | | *Scikit-learn's DPGMM* | 6108 | 0.683 | | DPMMpython | 475 | 0.705 |

### Installation ``` pip install dpmmpython ``` If you already have Julia installed, install [PyJulia](https://github.com/JuliaPy/pyjulia) and add the package `DPMMSubClusters` to your julia installation.

Make sure Julia path is configured correctly, e.g. you should be able to run julia by typing `julia` from the terminal, unless configured properly, PyJulia wont work. **Installation Shortcut for Ubuntu distributions**
If you do not have Julia installed, or wish to create a clean installation for the purpose of using this package. after installing (with pip), do the following: ``` import dpmmpython dpmmpython.install() ``` Optional arguments are `install(julia_download_path = 'https://julialang-s3.julialang.org/bin/linux/x64/1.4/julia-1.4.0-linux-x86_64.tar.gz', julia_target_path = None)`, where the former specify the julia download file, and the latter the installation path, if the installation path is not specified, `$HOME$/julia` will be used.
As the `install()` command edit your `.bashrc` path, before using the pacakge, the terminal should either be reset, or modify the current environment according to the julia path you specified (`$HOME$/julia/julia-1.4.0/bin` by default). ### Usage Example: ``` from dpmmpython.dpmmwrapper import DPMMPython from dpmmpython.priors import niw import numpy as np data,gt = DPMMPython.generate_gaussian_data(10000, 2, 10, 100.0) prior = niw(1,np.zeros(2),4,np.eye(2)) labels,_,sub_labels= DPMMPython.fit(data,100,prior = prior,verbose = True, gt = gt) ``` ``` Iteration: 1 || Clusters count: 1 || Log posterior: -71190.14226686998 || Vi score: 1.990707323192506 || NMI score: 6.69243345834295e-16 || Iter Time:0.004499912261962891 || Total time:0.004499912261962891 Iteration: 2 || Clusters count: 1 || Log posterior: -71190.14226686998 || Vi score: 1.990707323192506 || NMI score: 6.69243345834295e-16 || Iter Time:0.0038819313049316406 || Total time:0.008381843566894531 ... Iteration: 98 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.015907764434814453 || Total time:0.5749104022979736 Iteration: 99 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.01072382926940918 || Total time:0.5856342315673828 Iteration: 100 || Clusters count: 9 || Log posterior: -40607.39498126549 || Vi score: 0.11887067921133423 || NMI score: 0.9692247699387838 || Iter Time:0.010260820388793945 || Total time:0.5958950519561768 ``` You can modify the number of processes by using `DPMMPython.add_procs(procs_count)`, note that you can only scale it upwards. #### Additional Examples: [Clustering](https://nbviewer.jupyter.org/github/BGU-CS-VIL/dpmmpython/blob/master/examples/clustering_example.ipynb)
[Multi-Process](https://nbviewer.jupyter.org/github/BGU-CS-VIL/dpmmpython/blob/master/examples/multi_process.ipynb) #### Python 3.8 Due to recent issue with the package used as interface between Julia and Python https://github.com/JuliaPy/pyjulia/issues/425 , there might be problems working with Python >= 3.8. ### Misc For any questions: dinari@post.bgu.ac.il Contributions, feature requests, suggestion etc.. are welcomed. If you use this code for your work, please cite the following: ``` @inproceedings{dinari2019distributed, title={Distributed MCMC Inference in Dirichlet Process Mixture Models Using Julia}, author={Dinari, Or and Yu, Angel and Freifeld, Oren and Fisher III, John W}, booktitle={2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)}, pages={518--525}, year={2019} } ``` %prep %autosetup -n dpmmpython-trax-0.1.5 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-dpmmpython-trax -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.1.5-1 - Package Spec generated