%global _empty_manifest_terminate_build 0 Name: python-fuzzy-c-means Version: 1.7.0 Release: 1 Summary: A simple python implementation of Fuzzy C-means algorithm. License: MIT URL: https://github.com/omadson/fuzzy-c-means Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9e/a1/fe18a9cb3a65fe0fbe2e96ec6acf0753a09fe4d24868f42530f7db5df22d/fuzzy_c_means-1.7.0.tar.gz BuildArch: noarch Requires: python3-joblib Requires: python3-numpy Requires: python3-pydantic Requires: python3-tabulate Requires: python3-tqdm Requires: python3-typer %description # fuzzy-c-means ![GitHub](https://img.shields.io/github/license/omadson/fuzzy-c-means.svg) [![PyPI](https://img.shields.io/pypi/v/fuzzy-c-means.svg)](http://pypi.org/project/fuzzy-c-means/) [![Documentation Status](https://readthedocs.org/projects/fuzzy-c-means/badge/?version=latest)](https://fuzzy-c-means.readthedocs.io/en/latest/?badge=latest) [![GitHub last commit](https://img.shields.io/github/last-commit/omadson/fuzzy-c-means.svg)](https://github.com/omadson/fuzzy-c-means/commit/master) [![Downloads](https://pepy.tech/badge/fuzzy-c-means)](https://pepy.tech/project/fuzzy-c-means) [![DOI](https://zenodo.org/badge/186457481.svg)](https://zenodo.org/badge/latestdoi/186457481) **[Documentation](https://fuzzy-c-means.readthedocs.io/)** | **[Changelog](https://fuzzy-c-means.readthedocs.io/en/latest/CHANGELOG/)** | **[Citation](https://fuzzy-c-means.readthedocs.io/en/latest/citation/)** `fuzzy-c-means` is a Python module implementing the [Fuzzy C-means][1] clustering algorithm. ## installation the `fuzzy-c-means` package is available in [PyPI](https://pypi.org/project/fuzzy-c-means/). to install, simply type the following command: ``` pip install fuzzy-c-means ``` ## citation if you use `fuzzy-c-means` package in your paper, please cite it in your publication. ``` @software{dias2019fuzzy, author = {Madson Luiz Dantas Dias}, title = {fuzzy-c-means: An implementation of Fuzzy $C$-means clustering algorithm.}, month = may, year = 2019, publisher = {Zenodo}, doi = {10.5281/zenodo.3066222}, url = {https://git.io/fuzzy-c-means} } ``` ## contributing and support this project is open for contributions. here are some of the ways for you to contribute: - bug reports/fix - features requests - use-case demonstrations please open an [issue](https://github.com/omadson/fuzzy-c-means/issues) with enough information for us to reproduce your problem. A [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) would be very helpful. to make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a pull request! [1]: https://doi.org/10.1016/0098-3004(84)90020-7 [2]: http://scikit-learn.org/ %package -n python3-fuzzy-c-means Summary: A simple python implementation of Fuzzy C-means algorithm. Provides: python-fuzzy-c-means BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-fuzzy-c-means # fuzzy-c-means ![GitHub](https://img.shields.io/github/license/omadson/fuzzy-c-means.svg) [![PyPI](https://img.shields.io/pypi/v/fuzzy-c-means.svg)](http://pypi.org/project/fuzzy-c-means/) [![Documentation Status](https://readthedocs.org/projects/fuzzy-c-means/badge/?version=latest)](https://fuzzy-c-means.readthedocs.io/en/latest/?badge=latest) [![GitHub last commit](https://img.shields.io/github/last-commit/omadson/fuzzy-c-means.svg)](https://github.com/omadson/fuzzy-c-means/commit/master) [![Downloads](https://pepy.tech/badge/fuzzy-c-means)](https://pepy.tech/project/fuzzy-c-means) [![DOI](https://zenodo.org/badge/186457481.svg)](https://zenodo.org/badge/latestdoi/186457481) **[Documentation](https://fuzzy-c-means.readthedocs.io/)** | **[Changelog](https://fuzzy-c-means.readthedocs.io/en/latest/CHANGELOG/)** | **[Citation](https://fuzzy-c-means.readthedocs.io/en/latest/citation/)** `fuzzy-c-means` is a Python module implementing the [Fuzzy C-means][1] clustering algorithm. ## installation the `fuzzy-c-means` package is available in [PyPI](https://pypi.org/project/fuzzy-c-means/). to install, simply type the following command: ``` pip install fuzzy-c-means ``` ## citation if you use `fuzzy-c-means` package in your paper, please cite it in your publication. ``` @software{dias2019fuzzy, author = {Madson Luiz Dantas Dias}, title = {fuzzy-c-means: An implementation of Fuzzy $C$-means clustering algorithm.}, month = may, year = 2019, publisher = {Zenodo}, doi = {10.5281/zenodo.3066222}, url = {https://git.io/fuzzy-c-means} } ``` ## contributing and support this project is open for contributions. here are some of the ways for you to contribute: - bug reports/fix - features requests - use-case demonstrations please open an [issue](https://github.com/omadson/fuzzy-c-means/issues) with enough information for us to reproduce your problem. A [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) would be very helpful. to make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a pull request! [1]: https://doi.org/10.1016/0098-3004(84)90020-7 [2]: http://scikit-learn.org/ %package help Summary: Development documents and examples for fuzzy-c-means Provides: python3-fuzzy-c-means-doc %description help # fuzzy-c-means ![GitHub](https://img.shields.io/github/license/omadson/fuzzy-c-means.svg) [![PyPI](https://img.shields.io/pypi/v/fuzzy-c-means.svg)](http://pypi.org/project/fuzzy-c-means/) [![Documentation Status](https://readthedocs.org/projects/fuzzy-c-means/badge/?version=latest)](https://fuzzy-c-means.readthedocs.io/en/latest/?badge=latest) [![GitHub last commit](https://img.shields.io/github/last-commit/omadson/fuzzy-c-means.svg)](https://github.com/omadson/fuzzy-c-means/commit/master) [![Downloads](https://pepy.tech/badge/fuzzy-c-means)](https://pepy.tech/project/fuzzy-c-means) [![DOI](https://zenodo.org/badge/186457481.svg)](https://zenodo.org/badge/latestdoi/186457481) **[Documentation](https://fuzzy-c-means.readthedocs.io/)** | **[Changelog](https://fuzzy-c-means.readthedocs.io/en/latest/CHANGELOG/)** | **[Citation](https://fuzzy-c-means.readthedocs.io/en/latest/citation/)** `fuzzy-c-means` is a Python module implementing the [Fuzzy C-means][1] clustering algorithm. ## installation the `fuzzy-c-means` package is available in [PyPI](https://pypi.org/project/fuzzy-c-means/). to install, simply type the following command: ``` pip install fuzzy-c-means ``` ## citation if you use `fuzzy-c-means` package in your paper, please cite it in your publication. ``` @software{dias2019fuzzy, author = {Madson Luiz Dantas Dias}, title = {fuzzy-c-means: An implementation of Fuzzy $C$-means clustering algorithm.}, month = may, year = 2019, publisher = {Zenodo}, doi = {10.5281/zenodo.3066222}, url = {https://git.io/fuzzy-c-means} } ``` ## contributing and support this project is open for contributions. here are some of the ways for you to contribute: - bug reports/fix - features requests - use-case demonstrations please open an [issue](https://github.com/omadson/fuzzy-c-means/issues) with enough information for us to reproduce your problem. A [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) would be very helpful. to make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a pull request! [1]: https://doi.org/10.1016/0098-3004(84)90020-7 [2]: http://scikit-learn.org/ %prep %autosetup -n fuzzy-c-means-1.7.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-fuzzy-c-means -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.7.0-1 - Package Spec generated