%global _empty_manifest_terminate_build 0 Name: python-curvenote Version: 0.7.2 Release: 1 Summary: Helper library from Curvenote for data science in Jupyter notebooks License: MIT License URL: http://curvenote.com Source0: https://mirrors.nju.edu.cn/pypi/web/packages/71/f0/9cee6deca808eb3f38bda6d5d8c4e6c9bfc0eca8aabf0440ff8cc63a8b33/curvenote-0.7.2.tar.gz BuildArch: noarch Requires: python3-ipython Requires: python3-pandas Requires: python3-traitlets Requires: python3-ipywidgets %description # curvenote The Curvenote helper library for working in Jupyter Notebooks with Python kernels ## Installation ```bash ~$ python -m pip install curvenote ``` ## Summary - `stash` save a dict or pandas dataframe in a cell output without diaplying the data ```python from curvenote import stash stash('myvars', myvars) ``` - `AppState` a traitlet based class to help manage state in ipywidgets ui's ```python from curvenote import AppState, with_state state = AppState() # register a widget in state wave_1_amp = FloatSlider(1.0, min=0.1, max=5.0, step=0.1, description="1 - Amp") state.register_stateful_widget(wave_1_amp, "wave_1_amp", Float(1.0)) # register any trailet as a propery state.register_stateful_property("my_dict", Dict(dict(A="hello", B="world", C=1))) # observe the entire state def my_update_fn(state): some_calc_function(state.wave_1_amp, state.my_dict) state.observe(with_state(my_update_fn)) # observe a single registered widget def wave_1_observer(evt): pass state.register_widget_observer("wave_1_amp", wave_1_observer) # observe a single trait def trait_observer(evt): pass state.register_widget_observer("my_dict", trait_observer) # display state changes for debugging from IPython.display import display display(state.outlet) ``` %package -n python3-curvenote Summary: Helper library from Curvenote for data science in Jupyter notebooks Provides: python-curvenote BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-curvenote # curvenote The Curvenote helper library for working in Jupyter Notebooks with Python kernels ## Installation ```bash ~$ python -m pip install curvenote ``` ## Summary - `stash` save a dict or pandas dataframe in a cell output without diaplying the data ```python from curvenote import stash stash('myvars', myvars) ``` - `AppState` a traitlet based class to help manage state in ipywidgets ui's ```python from curvenote import AppState, with_state state = AppState() # register a widget in state wave_1_amp = FloatSlider(1.0, min=0.1, max=5.0, step=0.1, description="1 - Amp") state.register_stateful_widget(wave_1_amp, "wave_1_amp", Float(1.0)) # register any trailet as a propery state.register_stateful_property("my_dict", Dict(dict(A="hello", B="world", C=1))) # observe the entire state def my_update_fn(state): some_calc_function(state.wave_1_amp, state.my_dict) state.observe(with_state(my_update_fn)) # observe a single registered widget def wave_1_observer(evt): pass state.register_widget_observer("wave_1_amp", wave_1_observer) # observe a single trait def trait_observer(evt): pass state.register_widget_observer("my_dict", trait_observer) # display state changes for debugging from IPython.display import display display(state.outlet) ``` %package help Summary: Development documents and examples for curvenote Provides: python3-curvenote-doc %description help # curvenote The Curvenote helper library for working in Jupyter Notebooks with Python kernels ## Installation ```bash ~$ python -m pip install curvenote ``` ## Summary - `stash` save a dict or pandas dataframe in a cell output without diaplying the data ```python from curvenote import stash stash('myvars', myvars) ``` - `AppState` a traitlet based class to help manage state in ipywidgets ui's ```python from curvenote import AppState, with_state state = AppState() # register a widget in state wave_1_amp = FloatSlider(1.0, min=0.1, max=5.0, step=0.1, description="1 - Amp") state.register_stateful_widget(wave_1_amp, "wave_1_amp", Float(1.0)) # register any trailet as a propery state.register_stateful_property("my_dict", Dict(dict(A="hello", B="world", C=1))) # observe the entire state def my_update_fn(state): some_calc_function(state.wave_1_amp, state.my_dict) state.observe(with_state(my_update_fn)) # observe a single registered widget def wave_1_observer(evt): pass state.register_widget_observer("wave_1_amp", wave_1_observer) # observe a single trait def trait_observer(evt): pass state.register_widget_observer("my_dict", trait_observer) # display state changes for debugging from IPython.display import display display(state.outlet) ``` %prep %autosetup -n curvenote-0.7.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-curvenote -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.7.2-1 - Package Spec generated