%global _empty_manifest_terminate_build 0 Name: python-randvars Version: 0.0.17 Release: 1 Summary: A library of random variate generation routines License: MIT URL: https://github.com/jgoodie/randomvariates Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8d/c3/ea7b0913db31fe3a6af469eb0931fbc428e9f776f7959aec29de53c3e8ca/randvars-0.0.17.tar.gz BuildArch: noarch Requires: python3-numpy %description # Introduction RandomVariates is a library of random variate generation routines. The purpose behind this library was purely for educational purposes as a way to learn how to generate random variates using such methods as inverse transform, convolution, acceptance-rejection and composition methods. Additionally, this project was an excuse to get familiar with random number generators such as linear congruential generators, Tausworthe Generators and Widynski's "Squares: A Fast Counter-Based RNG" ## Pseudo Random Number Generators The following pseudo random number (PRN) generators are contained in this project: * A basic "desert island" linear congruential (implemented in the uniform function) * taus() and tausunif(): A basic Tausworthe PRN generator and a Tausworthe Uniform PRN generator * squaresrng(): Widynski's "Squares: A Fast Counter-Based RNG" https://arxiv.org/pdf/2004.06278.pdf ### Various helper functions to take advantage of the PRN generators * randseed(): Helper function to grab a "smaller" PRN from the Widynski squares PRN generator * generateseed(): Helper function to generate random seeds if the initial seed has not been set * set_seed() and get_seed(): Functions to get and set the seed. * reverse(): Helper function to reverse an integer ## Random Variate Generation Routines * uniform(): Routine to generate uniform random variates between a and b. Default uniform(a=0, b=1) * norm(): Method to generate random normals. Default norm(mu=0, sd=1) * exponential(): Generate exponential random variates. Default exponential(lam=1) * erlang(): Routine to generate Erlang_k(lambda) random variates. Default erlang(lam=1, k=1, n=1) * weibull(): Method to generate weibull random variates: Default weibull(lam=1, beta=1) * triangular(): Generate triangular random variates with a-lower, b-mode and c-upper Default triangular(a=0, b=1, c=2) * Bernoulli(): random variates Default bernoulli(p=0.5) * Binomial(): Routine to generate binomial random variates Default binomial(t=1, p=0.5) * dicetoss(): Simple/fun method to generate X-sides dice toss. Default is a simple 6-sided dicetoss(sides=6) * geometric(): Method to generate geometric random variates Default geometric(p=0.5) * negbin(): Routine to generate discrete random negative binomials Default negbin(t=1, p=0.5) * chisq(): Generate Chi-squared random variates Default chisq(df=1) * poisson(): Method to generate Poisson random variates Default poisson(lam=1) * gamma(): Gamma random variates shape parameter k and a scale parameter θ. Implementation is based on Marsaglia and Tsang's transformation-rejection method of generating gamma random variates (https://dl.acm.org/doi/10.1145/358407.358414) Default gamma(k=1.0, theta=1) * lognormal(): Generate lognormal random variates Default lognormal(mu=0, sd=1) * beta(): Routine to generate beta random variates Default beta(a=1, b=1) ## Limitations * Unlike Numpy's random variate generation routines, these are written in python. Numpy's random routines are written in C hence are much, much faster. * Beta and Gamma distributions only accept a, b, k and theta greater than one. Other random variate implementations, such as Numpy can handle values between 0 and 1. * Setting the seed does not affect the Tausworthe and Tausworthe Uniform PRN generators ### Distributions not currently implemented * Pearson Type V * Pearson Type VI * Log-Logistic * Johnson Bounded and Johnson unbounded * Bézier ## Installation ### Requirements: * Python 3.x * pip (https://pip.pypa.io/en/stable/installation/) To install the library, simply run the command: * pip install randvars ## Usage To use the library, you need to import the library into your python script then create an instance of random variates: > import randomvariates > rv = randomvariates.random.RandomVariates() Alternately you can import random from randomvariates: > from randomvariates import random > rv = random.RandomVariates() ### Seeds By default, a seed is not set when an instance or randomvariates is called. When a seed is set to None, randomvariates will randomly generate values for the various random variate routines. For repeatability, we can set a seed by calling the set_seed() method. Once a seed has been set, we can verify by calling the get_seed() method. > from randomvariates import random > > rv = random.RandomVariates() > > rv.set_seed(42) > > rv.get_seed() > > 42 ### Pseudo Random Number Generators To call the Widynski Squares PRN we can call the squaresrng() method. The squaresrng() method takes a center and key value. By default, the center and key are set to 1: squaresrng(ctr=1, key=1) > rv.squaresrng(42,21) > > 22904061750312427071608663841693658494663185320788517623007713567980053732104718807902410691731255108163475339984462249791973853173096390867949739437289512015166556428304384 As of 11-06-2021, the Tausworthe PRN and Tausworthe Uniform PRN generator does not take a seed value (See Limitations above) To call the Tausworthe generators, simply call rv.taus() and rv.tausunif(). By default taus() will generate 100 binary PRNs and rv.tausunif() will generate a single uniform(0,1): >rv.taus(n=100) > > array([0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0]) > rv.tausunif(n=1) > >array([0.22627192]) **Linear Congruential Generator (LCG)** The Uniform PRN generator is based off a "desert island" LCG of the form: > X_{i} = 16807 X_{i-1} mod(2**32 - 1) To call the uniform PRN generator simply call: > rv.uniform() > > array([0.0028378]) To generate more than one unif(0,1), call the method with n=X where X is the number of unif(0,1)s to generate: > rv.uniform(n=25) > > array([0.0028378 , 0.69495865, 0.17008364, 0.59578035, 0.28035944, 0.00113405, 0.05993272, 0.28927888, 0.91019703, 0.68147951, 0.62609725, 0.81650574, 0.01200872, 0.83049583, 0.14336138, 0.4747437 , 0.01741077, 0.62288295, 0.79372406, 0.12022883, 0.68598241, 0.3064384 , 0.31021374, 0.76239295, 0.53823463]) If we want to generate something other than unif(0,1), we can call the function with a=X and b=Y where X and Y are the lower and upper bounds of the uniform distribution: > rv.uniform(a=7, b=11, n=25) > > array([ 7.01135121, 9.77983461, 7.68033457, 9.3831214 , 8.12143777, 7.00453619, 7.23973089, 8.15711553, 10.64078812, 9.72591803, 9.50438901, 10.26602297, 7.04803487, 10.32198331, 7.57344553, 8.89897481, 7.0696431 , 9.4915318 , 10.17489623, 7.48091533, 9.74392966, 8.22575361, 8.24085498, 10.04957178, 9.15293853]) ### Distributions **Normal Random Variates** To generate random normal random variates, call the norm() function. By default, the norm() function will generate values with mean = 0 and standard deviation = 1. > rv.norm(n=25) > > array([-1.33438863, 0.12180611, 0.88656523, 0.50965537, -1.64358406, -0.25778164, 0.57095618, 1.90310886, -0.05967737, -0.34183211, 1.40942348, 0.588753 , -2.00879407, -0.27557057, -0.05367554, 0.36562436, 1.51957859, -0.87597507, 0.27341912, 0.99870143, 0.0563413 , -0.58931763, 0.06256761, 1.34552544, -0.41456673]) To generate normals with other means and standard deviations, simply specify them when calling the function: > rv.norm(mu=42, sd=21, n=25) > > array([31.09197496, 90.91916642, 10.96438887, 63.22805106, 11.65331438, 42.3934924 , 31.50241102, 57.32494887, 39.63622134, 50.84789244, 29.66813461, 71.59768198, 51.23679519, 29.62926174, 38.93133399, 21.33704934, 44.01056639, 85.43369206, 10.93161744, 35.5352881 , 47.6567116 , 62.89812129, 35.67247842, 48.76775665, 37.78179072]) **Exponential Random Variates** By default, the exponential() function will generate a single, lambda=1 random variate. > rv.exponential() > > array([1.11685025]) To generate exponentials with different rates (lambda), call the exponential function with lam=X, where X is 1/X rate: > rv.exponential(lam=42, n=25) > > array([0.02659167, 0.05889761, 0.0237974 , 0.05500891, 0.00990581, 0.00665694, 0.01027128, 0.00311863, 0.00991187, 0.00155661, 0.02532011, 0.00358105, 0.06095103, 0.02608557, 0.03126096, 0.01844892, 0.04179501, 0.00204212, 0.01357267, 0.02956585, 0.05493093, 0.04847486, 0.03083947, 0.03648715, 0.02353137]) **Erlang Random Variates** Random Erlang variates can be generated by calling the erlang() function. By default, the erlang function will generate variates with lambda = 1 and shape (k) = 1: > rv.erlang() > > array([0.39646936]) To generate erlangs with different rate and shape parameters, set lam=X and k = Y, where X is the lambda rate and Y is the shape: > rv.erlang(lam=5, k=5, n=25) > > array([0.39646936, 0.08803646, 0.45897164, 0.10449879, 1.07778402, 1.41096694, 1.04868842, 2.09746919, 1.07729126, 2.76008462, 0.42352393, 1.96869049, 0.08046101, 0.40697774, 0.31337257, 0.61761435, 0.18975684, 2.49867301, 0.8335498 , 0.34090517, 0.10486022, 0.13990266, 0.31996746, 0.24335083, 0.46553741]) **Weibull Random Variates** To generate values from the Weibull distribution, call the weibull() method with lam and beta. By default, lam and beta are set to 1 weibull(self, lam=1, beta=1). > rv.weibull() > > array([0.00284184]) To generate weibull values with different lam (shape) and beta (scale), set lam and beta as such: > rv.weibull(lam=3, beta=5, n=25) > > array([0.10318073, 0.34497802, 0.23822211, 0.32680215, 0.26688172, 0.08587253, 0.19102132, 0.26887509, 0.39745421, 0.3424279 , 0.33224353, 0.37046057, 0.13781682, 0.37386295, 0.2295085 , 0.30523775, 0.14852653, 0.33166333, 0.36519926, 0.22099585, 0.34327599, 0.2726182 , 0.2734267 , 0.35840856, 0.31657801]) **Triangular Random Variates** By default, the randomvariates library will generate Triangular(0,1,2) values from a triangular distribution: > rv.triangular() > >array([0.07533662]) To generate values from a Triangular distribution with lower bound a, mode b and upper bound c, call the triangular() function with a, b, and c set: > rv.triangular(a=-5, b=0, c=5, n=25) > > array([-4.6233169 , 1.09461047, -2.08380691, 0.50433737, -1.25594176, -4.76187742, -3.26892052, -1.19685075, 2.88100295, 1.00925764, 0.67621261, 1.97102115, -4.22512206, 2.08877884, -2.32267501, -0.12791778, -4.06697336, 0.65766738, 1.7884899 , -2.54817586, 1.0375665 , -1.08567757, -1.06163902, 1.55321124, 0.19497467]) **Bernoulli Random Variates** To generate bernoulli(p) random values, call the bernoulli() method with probability, p. By default, the bernoulli() method generates bernoulli(0.5) random values. > rv.bernoulli() > > array([0]) > > rv.bernoulli(n=25) > >array([0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1]) To generate bernoulli(0.8) random values, set p=0.8: > rv.bernoulli(p=0.8, n=25) > > array([0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1]) **Binomial Random Variates** Binomial(n,p) random values can be generated with the binomial() function. By default, the binomial() function generates 1 trial at p=0.5: > rv.binomial() > > array([0]) Note: Don't confuse t=trials and n=number of values to generate. To generate 25 binomials with 10 trials, and probability 0.5, we would specify binomial(t=10, p=0.5, n=25): > rv.binomial(t=10, p=0.5, n=25) > > array([6, 5, 3, 3, 5, 3, 5, 7, 6, 5, 3, 5, 4, 5, 4, 4, 2, 6, 6, 6, 4, 4, 6, 5, 2]) **Random X-sided Dice Toss** For the D&D fans, the dicetoss() function allows you to generate an X-sided die toss. For example, to generate 10, 20-sided dice tosses, simply call the dicetoss() function. By default, dicetoss() defaults to a 6-sided die: > rv.dicetoss(n=10) > > array([6., 6., 5., 1., 6., 3., 1., 5., 3., 5.]) To generate 10, 20-sided dice toss, set the side variable to 20: >rv.dicetoss(sides=20, n=10) > > > array([20., 20., 17., 4., 20., 10., 3., 15., 10., 14.]) **Geometric Random Variates** To generate geometric random values, use the geometric() function. By default, the geometric function is set to a probability of 0.5: > rv.geometric() > > array([5.]) To generate geometric values with a different probability, set p equal to the new probability: > rv.geometric(p=0.42, n=25) > > array([ 7., 12., 4., 1., 6., 2., 1., 3., 2., 3., 1., 1., 2., 1., 2., 7., 3., 1., 4., 2., 1., 2., 2., 4., 1.]) **Negative Binomial Random Variates** To generate negative binomial random variates, call the negbin() funtion. By default. negbin() will generate values with a probability of 0.5 and 1 trial: > rv.negbin() > > array([1.]) To generate 25 negbin values with a probability of 0.42 and 10 trials: > rv.negbin(t=10, p=0.42, n=25) > > array([35., 21., 30., 26., 24., 24., 20., 28., 21., 22., 29., 18., 22., 26., 19., 19., 22., 22., 21., 25., 25., 26., 22., 27., 24.]) **Chi-Squared Random Variates** Chi-Squared random values can be generated by calling the chisq() method. By default, chisq() generates values with df=1: > rv.chisq() > > array([0.02609475]) To generated chi-squared values with different degrees of freedom, set df=X where X is the degrees of freedom: > rv.chisq(df=3, n=25) > > array([4.03013192, 2.1255032 , 1.41496674, 2.49301795, 4.34632967, 7.07483573, 8.80603908, 0.40890643, 1.02559277, 0.3263966 , 1.16851057, 9.41171507, 0.10331964, 0.4620984 , 1.30332824, 2.86123596, 6.30155659, 2.34574672, 6.51270442, 1.8040176 , 2.73061465, 2.18939106, 0.17322089, 1.95769521, 1.34417982]) **Poisson Random Variates** By default, the poisson() method will generate poission random values with lam=1: > rv.poisson() > > array([18]) To generate possion random variates for different lambda values, set lam=X, where X is the new labmda value: > rv.poisson(lam=3, n=25) > > array([4, 7, 3, 2, 3, 3, 0, 3, 5, 1, 3, 2, 9, 3, 1, 3, 2, 3, 4, 5, 2, 4, 5, 7, 2]) **Gamma Random Variates** Gamma random values can be generated by calling the gamma() function. By default, gamma() generates values with a shape parameter (k) and scale parameter (theta) equal to one: > rv.gamma() > > array([0.0496442]) To generate gamma values with different shape and scale parameters set k = shape and theta = scale. i.e.) k=3, theta=3 > rv.gamma(k=3, theta=3, n=25) > > array([ 2.86760705, 8.28296535, 15.61018946, 13.89795502, 28.71023072, 0.98039742, 14.78770565, 8.31682721, 7.12832689, 11.31451427, 14.12970636, 9.03501294, 18.95392932, 8.94168958, 2.80143093, 7.09702805, 1.98142127, 6.69417433, 7.64163982, 12.51436153, 9.84781027, 7.80807741, 6.79817083, 7.22277182, 13.64361073]) **Lognormal Random Variates** Lognormal values can be generated with the lognormal() function: > rv.lognormal() > > array([0.24196649]) To generate lognormal values with different mean and standards deviation, specify the mu=X and sd=Y parameters where mu=X is the mean and sd=Y is the standard deviation: > rv.lognormal(mu=5, sd=2, n=10) > > array([ 8.68926144, 1165.743983 , 542.36799958, 50.00329616, 2518.21870637, 6.20023729, 2.58041108, 83.05661697, 617.74324652, 122.09875036]) **Beta Random Variates** Beta random values can be generated via the beta() method. The beta() method takes two shape parameters - a and b. By default, the a and b parameters are set to 1: > rv.beta() > > array([0.01995716]) To generate beta values with different shape parameters, specify different shape values as such: > rv.beta(a = 2, b = 4, n = 25) > > array([0.05843224, 0.17390187, 0.50358743, 0.50885326, 0.71498465, 0.01966699, 0.53999924, 0.18878303, 0.30052695, 0.66454575, 0.47430718, 0.23385242, 0.69526851, 0.48014572, 0.07415403, 0.22019374, 0.07180719, 0.17131799, 0.19680721, 0.23783813, 0.32510779, 0.29333343, 0.20013351, 0.27709332, 0.51118395]) # Release History 2021-11-10: More stupid seed fixes 2021-11-10: Erlang fixes 2021-11-08: Beta fixes 2021-11-08: Gamma fixes 2021-11-08: Refactored poisson to correctly handle the situation when a seed is set 2021-11-08: Found a bug in the seed algorithm 2021-11-08: Refactored norm to properly hand seed==0 2021-11-08: Refactored chisq method to work around "funky" seeding issues 2021-11-08: Refactored the negbin method to properly handle the situation when a seed is set. 2021-11-08: Refactored the binomial method to properly handle the situation when a seed is set. 2021-11-06: Initial creation of pip package 2021-11-06: Added Tausworthe Generator and a uniform generator based off the Tausworthe generator. %package -n python3-randvars Summary: A library of random variate generation routines Provides: python-randvars BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-randvars # Introduction RandomVariates is a library of random variate generation routines. The purpose behind this library was purely for educational purposes as a way to learn how to generate random variates using such methods as inverse transform, convolution, acceptance-rejection and composition methods. Additionally, this project was an excuse to get familiar with random number generators such as linear congruential generators, Tausworthe Generators and Widynski's "Squares: A Fast Counter-Based RNG" ## Pseudo Random Number Generators The following pseudo random number (PRN) generators are contained in this project: * A basic "desert island" linear congruential (implemented in the uniform function) * taus() and tausunif(): A basic Tausworthe PRN generator and a Tausworthe Uniform PRN generator * squaresrng(): Widynski's "Squares: A Fast Counter-Based RNG" https://arxiv.org/pdf/2004.06278.pdf ### Various helper functions to take advantage of the PRN generators * randseed(): Helper function to grab a "smaller" PRN from the Widynski squares PRN generator * generateseed(): Helper function to generate random seeds if the initial seed has not been set * set_seed() and get_seed(): Functions to get and set the seed. * reverse(): Helper function to reverse an integer ## Random Variate Generation Routines * uniform(): Routine to generate uniform random variates between a and b. Default uniform(a=0, b=1) * norm(): Method to generate random normals. Default norm(mu=0, sd=1) * exponential(): Generate exponential random variates. Default exponential(lam=1) * erlang(): Routine to generate Erlang_k(lambda) random variates. Default erlang(lam=1, k=1, n=1) * weibull(): Method to generate weibull random variates: Default weibull(lam=1, beta=1) * triangular(): Generate triangular random variates with a-lower, b-mode and c-upper Default triangular(a=0, b=1, c=2) * Bernoulli(): random variates Default bernoulli(p=0.5) * Binomial(): Routine to generate binomial random variates Default binomial(t=1, p=0.5) * dicetoss(): Simple/fun method to generate X-sides dice toss. Default is a simple 6-sided dicetoss(sides=6) * geometric(): Method to generate geometric random variates Default geometric(p=0.5) * negbin(): Routine to generate discrete random negative binomials Default negbin(t=1, p=0.5) * chisq(): Generate Chi-squared random variates Default chisq(df=1) * poisson(): Method to generate Poisson random variates Default poisson(lam=1) * gamma(): Gamma random variates shape parameter k and a scale parameter θ. Implementation is based on Marsaglia and Tsang's transformation-rejection method of generating gamma random variates (https://dl.acm.org/doi/10.1145/358407.358414) Default gamma(k=1.0, theta=1) * lognormal(): Generate lognormal random variates Default lognormal(mu=0, sd=1) * beta(): Routine to generate beta random variates Default beta(a=1, b=1) ## Limitations * Unlike Numpy's random variate generation routines, these are written in python. Numpy's random routines are written in C hence are much, much faster. * Beta and Gamma distributions only accept a, b, k and theta greater than one. Other random variate implementations, such as Numpy can handle values between 0 and 1. * Setting the seed does not affect the Tausworthe and Tausworthe Uniform PRN generators ### Distributions not currently implemented * Pearson Type V * Pearson Type VI * Log-Logistic * Johnson Bounded and Johnson unbounded * Bézier ## Installation ### Requirements: * Python 3.x * pip (https://pip.pypa.io/en/stable/installation/) To install the library, simply run the command: * pip install randvars ## Usage To use the library, you need to import the library into your python script then create an instance of random variates: > import randomvariates > rv = randomvariates.random.RandomVariates() Alternately you can import random from randomvariates: > from randomvariates import random > rv = random.RandomVariates() ### Seeds By default, a seed is not set when an instance or randomvariates is called. When a seed is set to None, randomvariates will randomly generate values for the various random variate routines. For repeatability, we can set a seed by calling the set_seed() method. Once a seed has been set, we can verify by calling the get_seed() method. > from randomvariates import random > > rv = random.RandomVariates() > > rv.set_seed(42) > > rv.get_seed() > > 42 ### Pseudo Random Number Generators To call the Widynski Squares PRN we can call the squaresrng() method. The squaresrng() method takes a center and key value. By default, the center and key are set to 1: squaresrng(ctr=1, key=1) > rv.squaresrng(42,21) > > 22904061750312427071608663841693658494663185320788517623007713567980053732104718807902410691731255108163475339984462249791973853173096390867949739437289512015166556428304384 As of 11-06-2021, the Tausworthe PRN and Tausworthe Uniform PRN generator does not take a seed value (See Limitations above) To call the Tausworthe generators, simply call rv.taus() and rv.tausunif(). By default taus() will generate 100 binary PRNs and rv.tausunif() will generate a single uniform(0,1): >rv.taus(n=100) > > array([0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0]) > rv.tausunif(n=1) > >array([0.22627192]) **Linear Congruential Generator (LCG)** The Uniform PRN generator is based off a "desert island" LCG of the form: > X_{i} = 16807 X_{i-1} mod(2**32 - 1) To call the uniform PRN generator simply call: > rv.uniform() > > array([0.0028378]) To generate more than one unif(0,1), call the method with n=X where X is the number of unif(0,1)s to generate: > rv.uniform(n=25) > > array([0.0028378 , 0.69495865, 0.17008364, 0.59578035, 0.28035944, 0.00113405, 0.05993272, 0.28927888, 0.91019703, 0.68147951, 0.62609725, 0.81650574, 0.01200872, 0.83049583, 0.14336138, 0.4747437 , 0.01741077, 0.62288295, 0.79372406, 0.12022883, 0.68598241, 0.3064384 , 0.31021374, 0.76239295, 0.53823463]) If we want to generate something other than unif(0,1), we can call the function with a=X and b=Y where X and Y are the lower and upper bounds of the uniform distribution: > rv.uniform(a=7, b=11, n=25) > > array([ 7.01135121, 9.77983461, 7.68033457, 9.3831214 , 8.12143777, 7.00453619, 7.23973089, 8.15711553, 10.64078812, 9.72591803, 9.50438901, 10.26602297, 7.04803487, 10.32198331, 7.57344553, 8.89897481, 7.0696431 , 9.4915318 , 10.17489623, 7.48091533, 9.74392966, 8.22575361, 8.24085498, 10.04957178, 9.15293853]) ### Distributions **Normal Random Variates** To generate random normal random variates, call the norm() function. By default, the norm() function will generate values with mean = 0 and standard deviation = 1. > rv.norm(n=25) > > array([-1.33438863, 0.12180611, 0.88656523, 0.50965537, -1.64358406, -0.25778164, 0.57095618, 1.90310886, -0.05967737, -0.34183211, 1.40942348, 0.588753 , -2.00879407, -0.27557057, -0.05367554, 0.36562436, 1.51957859, -0.87597507, 0.27341912, 0.99870143, 0.0563413 , -0.58931763, 0.06256761, 1.34552544, -0.41456673]) To generate normals with other means and standard deviations, simply specify them when calling the function: > rv.norm(mu=42, sd=21, n=25) > > array([31.09197496, 90.91916642, 10.96438887, 63.22805106, 11.65331438, 42.3934924 , 31.50241102, 57.32494887, 39.63622134, 50.84789244, 29.66813461, 71.59768198, 51.23679519, 29.62926174, 38.93133399, 21.33704934, 44.01056639, 85.43369206, 10.93161744, 35.5352881 , 47.6567116 , 62.89812129, 35.67247842, 48.76775665, 37.78179072]) **Exponential Random Variates** By default, the exponential() function will generate a single, lambda=1 random variate. > rv.exponential() > > array([1.11685025]) To generate exponentials with different rates (lambda), call the exponential function with lam=X, where X is 1/X rate: > rv.exponential(lam=42, n=25) > > array([0.02659167, 0.05889761, 0.0237974 , 0.05500891, 0.00990581, 0.00665694, 0.01027128, 0.00311863, 0.00991187, 0.00155661, 0.02532011, 0.00358105, 0.06095103, 0.02608557, 0.03126096, 0.01844892, 0.04179501, 0.00204212, 0.01357267, 0.02956585, 0.05493093, 0.04847486, 0.03083947, 0.03648715, 0.02353137]) **Erlang Random Variates** Random Erlang variates can be generated by calling the erlang() function. By default, the erlang function will generate variates with lambda = 1 and shape (k) = 1: > rv.erlang() > > array([0.39646936]) To generate erlangs with different rate and shape parameters, set lam=X and k = Y, where X is the lambda rate and Y is the shape: > rv.erlang(lam=5, k=5, n=25) > > array([0.39646936, 0.08803646, 0.45897164, 0.10449879, 1.07778402, 1.41096694, 1.04868842, 2.09746919, 1.07729126, 2.76008462, 0.42352393, 1.96869049, 0.08046101, 0.40697774, 0.31337257, 0.61761435, 0.18975684, 2.49867301, 0.8335498 , 0.34090517, 0.10486022, 0.13990266, 0.31996746, 0.24335083, 0.46553741]) **Weibull Random Variates** To generate values from the Weibull distribution, call the weibull() method with lam and beta. By default, lam and beta are set to 1 weibull(self, lam=1, beta=1). > rv.weibull() > > array([0.00284184]) To generate weibull values with different lam (shape) and beta (scale), set lam and beta as such: > rv.weibull(lam=3, beta=5, n=25) > > array([0.10318073, 0.34497802, 0.23822211, 0.32680215, 0.26688172, 0.08587253, 0.19102132, 0.26887509, 0.39745421, 0.3424279 , 0.33224353, 0.37046057, 0.13781682, 0.37386295, 0.2295085 , 0.30523775, 0.14852653, 0.33166333, 0.36519926, 0.22099585, 0.34327599, 0.2726182 , 0.2734267 , 0.35840856, 0.31657801]) **Triangular Random Variates** By default, the randomvariates library will generate Triangular(0,1,2) values from a triangular distribution: > rv.triangular() > >array([0.07533662]) To generate values from a Triangular distribution with lower bound a, mode b and upper bound c, call the triangular() function with a, b, and c set: > rv.triangular(a=-5, b=0, c=5, n=25) > > array([-4.6233169 , 1.09461047, -2.08380691, 0.50433737, -1.25594176, -4.76187742, -3.26892052, -1.19685075, 2.88100295, 1.00925764, 0.67621261, 1.97102115, -4.22512206, 2.08877884, -2.32267501, -0.12791778, -4.06697336, 0.65766738, 1.7884899 , -2.54817586, 1.0375665 , -1.08567757, -1.06163902, 1.55321124, 0.19497467]) **Bernoulli Random Variates** To generate bernoulli(p) random values, call the bernoulli() method with probability, p. By default, the bernoulli() method generates bernoulli(0.5) random values. > rv.bernoulli() > > array([0]) > > rv.bernoulli(n=25) > >array([0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1]) To generate bernoulli(0.8) random values, set p=0.8: > rv.bernoulli(p=0.8, n=25) > > array([0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1]) **Binomial Random Variates** Binomial(n,p) random values can be generated with the binomial() function. By default, the binomial() function generates 1 trial at p=0.5: > rv.binomial() > > array([0]) Note: Don't confuse t=trials and n=number of values to generate. To generate 25 binomials with 10 trials, and probability 0.5, we would specify binomial(t=10, p=0.5, n=25): > rv.binomial(t=10, p=0.5, n=25) > > array([6, 5, 3, 3, 5, 3, 5, 7, 6, 5, 3, 5, 4, 5, 4, 4, 2, 6, 6, 6, 4, 4, 6, 5, 2]) **Random X-sided Dice Toss** For the D&D fans, the dicetoss() function allows you to generate an X-sided die toss. For example, to generate 10, 20-sided dice tosses, simply call the dicetoss() function. By default, dicetoss() defaults to a 6-sided die: > rv.dicetoss(n=10) > > array([6., 6., 5., 1., 6., 3., 1., 5., 3., 5.]) To generate 10, 20-sided dice toss, set the side variable to 20: >rv.dicetoss(sides=20, n=10) > > > array([20., 20., 17., 4., 20., 10., 3., 15., 10., 14.]) **Geometric Random Variates** To generate geometric random values, use the geometric() function. By default, the geometric function is set to a probability of 0.5: > rv.geometric() > > array([5.]) To generate geometric values with a different probability, set p equal to the new probability: > rv.geometric(p=0.42, n=25) > > array([ 7., 12., 4., 1., 6., 2., 1., 3., 2., 3., 1., 1., 2., 1., 2., 7., 3., 1., 4., 2., 1., 2., 2., 4., 1.]) **Negative Binomial Random Variates** To generate negative binomial random variates, call the negbin() funtion. By default. negbin() will generate values with a probability of 0.5 and 1 trial: > rv.negbin() > > array([1.]) To generate 25 negbin values with a probability of 0.42 and 10 trials: > rv.negbin(t=10, p=0.42, n=25) > > array([35., 21., 30., 26., 24., 24., 20., 28., 21., 22., 29., 18., 22., 26., 19., 19., 22., 22., 21., 25., 25., 26., 22., 27., 24.]) **Chi-Squared Random Variates** Chi-Squared random values can be generated by calling the chisq() method. By default, chisq() generates values with df=1: > rv.chisq() > > array([0.02609475]) To generated chi-squared values with different degrees of freedom, set df=X where X is the degrees of freedom: > rv.chisq(df=3, n=25) > > array([4.03013192, 2.1255032 , 1.41496674, 2.49301795, 4.34632967, 7.07483573, 8.80603908, 0.40890643, 1.02559277, 0.3263966 , 1.16851057, 9.41171507, 0.10331964, 0.4620984 , 1.30332824, 2.86123596, 6.30155659, 2.34574672, 6.51270442, 1.8040176 , 2.73061465, 2.18939106, 0.17322089, 1.95769521, 1.34417982]) **Poisson Random Variates** By default, the poisson() method will generate poission random values with lam=1: > rv.poisson() > > array([18]) To generate possion random variates for different lambda values, set lam=X, where X is the new labmda value: > rv.poisson(lam=3, n=25) > > array([4, 7, 3, 2, 3, 3, 0, 3, 5, 1, 3, 2, 9, 3, 1, 3, 2, 3, 4, 5, 2, 4, 5, 7, 2]) **Gamma Random Variates** Gamma random values can be generated by calling the gamma() function. By default, gamma() generates values with a shape parameter (k) and scale parameter (theta) equal to one: > rv.gamma() > > array([0.0496442]) To generate gamma values with different shape and scale parameters set k = shape and theta = scale. i.e.) k=3, theta=3 > rv.gamma(k=3, theta=3, n=25) > > array([ 2.86760705, 8.28296535, 15.61018946, 13.89795502, 28.71023072, 0.98039742, 14.78770565, 8.31682721, 7.12832689, 11.31451427, 14.12970636, 9.03501294, 18.95392932, 8.94168958, 2.80143093, 7.09702805, 1.98142127, 6.69417433, 7.64163982, 12.51436153, 9.84781027, 7.80807741, 6.79817083, 7.22277182, 13.64361073]) **Lognormal Random Variates** Lognormal values can be generated with the lognormal() function: > rv.lognormal() > > array([0.24196649]) To generate lognormal values with different mean and standards deviation, specify the mu=X and sd=Y parameters where mu=X is the mean and sd=Y is the standard deviation: > rv.lognormal(mu=5, sd=2, n=10) > > array([ 8.68926144, 1165.743983 , 542.36799958, 50.00329616, 2518.21870637, 6.20023729, 2.58041108, 83.05661697, 617.74324652, 122.09875036]) **Beta Random Variates** Beta random values can be generated via the beta() method. The beta() method takes two shape parameters - a and b. By default, the a and b parameters are set to 1: > rv.beta() > > array([0.01995716]) To generate beta values with different shape parameters, specify different shape values as such: > rv.beta(a = 2, b = 4, n = 25) > > array([0.05843224, 0.17390187, 0.50358743, 0.50885326, 0.71498465, 0.01966699, 0.53999924, 0.18878303, 0.30052695, 0.66454575, 0.47430718, 0.23385242, 0.69526851, 0.48014572, 0.07415403, 0.22019374, 0.07180719, 0.17131799, 0.19680721, 0.23783813, 0.32510779, 0.29333343, 0.20013351, 0.27709332, 0.51118395]) # Release History 2021-11-10: More stupid seed fixes 2021-11-10: Erlang fixes 2021-11-08: Beta fixes 2021-11-08: Gamma fixes 2021-11-08: Refactored poisson to correctly handle the situation when a seed is set 2021-11-08: Found a bug in the seed algorithm 2021-11-08: Refactored norm to properly hand seed==0 2021-11-08: Refactored chisq method to work around "funky" seeding issues 2021-11-08: Refactored the negbin method to properly handle the situation when a seed is set. 2021-11-08: Refactored the binomial method to properly handle the situation when a seed is set. 2021-11-06: Initial creation of pip package 2021-11-06: Added Tausworthe Generator and a uniform generator based off the Tausworthe generator. %package help Summary: Development documents and examples for randvars Provides: python3-randvars-doc %description help # Introduction RandomVariates is a library of random variate generation routines. The purpose behind this library was purely for educational purposes as a way to learn how to generate random variates using such methods as inverse transform, convolution, acceptance-rejection and composition methods. Additionally, this project was an excuse to get familiar with random number generators such as linear congruential generators, Tausworthe Generators and Widynski's "Squares: A Fast Counter-Based RNG" ## Pseudo Random Number Generators The following pseudo random number (PRN) generators are contained in this project: * A basic "desert island" linear congruential (implemented in the uniform function) * taus() and tausunif(): A basic Tausworthe PRN generator and a Tausworthe Uniform PRN generator * squaresrng(): Widynski's "Squares: A Fast Counter-Based RNG" https://arxiv.org/pdf/2004.06278.pdf ### Various helper functions to take advantage of the PRN generators * randseed(): Helper function to grab a "smaller" PRN from the Widynski squares PRN generator * generateseed(): Helper function to generate random seeds if the initial seed has not been set * set_seed() and get_seed(): Functions to get and set the seed. * reverse(): Helper function to reverse an integer ## Random Variate Generation Routines * uniform(): Routine to generate uniform random variates between a and b. Default uniform(a=0, b=1) * norm(): Method to generate random normals. Default norm(mu=0, sd=1) * exponential(): Generate exponential random variates. Default exponential(lam=1) * erlang(): Routine to generate Erlang_k(lambda) random variates. Default erlang(lam=1, k=1, n=1) * weibull(): Method to generate weibull random variates: Default weibull(lam=1, beta=1) * triangular(): Generate triangular random variates with a-lower, b-mode and c-upper Default triangular(a=0, b=1, c=2) * Bernoulli(): random variates Default bernoulli(p=0.5) * Binomial(): Routine to generate binomial random variates Default binomial(t=1, p=0.5) * dicetoss(): Simple/fun method to generate X-sides dice toss. Default is a simple 6-sided dicetoss(sides=6) * geometric(): Method to generate geometric random variates Default geometric(p=0.5) * negbin(): Routine to generate discrete random negative binomials Default negbin(t=1, p=0.5) * chisq(): Generate Chi-squared random variates Default chisq(df=1) * poisson(): Method to generate Poisson random variates Default poisson(lam=1) * gamma(): Gamma random variates shape parameter k and a scale parameter θ. Implementation is based on Marsaglia and Tsang's transformation-rejection method of generating gamma random variates (https://dl.acm.org/doi/10.1145/358407.358414) Default gamma(k=1.0, theta=1) * lognormal(): Generate lognormal random variates Default lognormal(mu=0, sd=1) * beta(): Routine to generate beta random variates Default beta(a=1, b=1) ## Limitations * Unlike Numpy's random variate generation routines, these are written in python. Numpy's random routines are written in C hence are much, much faster. * Beta and Gamma distributions only accept a, b, k and theta greater than one. Other random variate implementations, such as Numpy can handle values between 0 and 1. * Setting the seed does not affect the Tausworthe and Tausworthe Uniform PRN generators ### Distributions not currently implemented * Pearson Type V * Pearson Type VI * Log-Logistic * Johnson Bounded and Johnson unbounded * Bézier ## Installation ### Requirements: * Python 3.x * pip (https://pip.pypa.io/en/stable/installation/) To install the library, simply run the command: * pip install randvars ## Usage To use the library, you need to import the library into your python script then create an instance of random variates: > import randomvariates > rv = randomvariates.random.RandomVariates() Alternately you can import random from randomvariates: > from randomvariates import random > rv = random.RandomVariates() ### Seeds By default, a seed is not set when an instance or randomvariates is called. When a seed is set to None, randomvariates will randomly generate values for the various random variate routines. For repeatability, we can set a seed by calling the set_seed() method. Once a seed has been set, we can verify by calling the get_seed() method. > from randomvariates import random > > rv = random.RandomVariates() > > rv.set_seed(42) > > rv.get_seed() > > 42 ### Pseudo Random Number Generators To call the Widynski Squares PRN we can call the squaresrng() method. The squaresrng() method takes a center and key value. By default, the center and key are set to 1: squaresrng(ctr=1, key=1) > rv.squaresrng(42,21) > > 22904061750312427071608663841693658494663185320788517623007713567980053732104718807902410691731255108163475339984462249791973853173096390867949739437289512015166556428304384 As of 11-06-2021, the Tausworthe PRN and Tausworthe Uniform PRN generator does not take a seed value (See Limitations above) To call the Tausworthe generators, simply call rv.taus() and rv.tausunif(). By default taus() will generate 100 binary PRNs and rv.tausunif() will generate a single uniform(0,1): >rv.taus(n=100) > > array([0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0]) > rv.tausunif(n=1) > >array([0.22627192]) **Linear Congruential Generator (LCG)** The Uniform PRN generator is based off a "desert island" LCG of the form: > X_{i} = 16807 X_{i-1} mod(2**32 - 1) To call the uniform PRN generator simply call: > rv.uniform() > > array([0.0028378]) To generate more than one unif(0,1), call the method with n=X where X is the number of unif(0,1)s to generate: > rv.uniform(n=25) > > array([0.0028378 , 0.69495865, 0.17008364, 0.59578035, 0.28035944, 0.00113405, 0.05993272, 0.28927888, 0.91019703, 0.68147951, 0.62609725, 0.81650574, 0.01200872, 0.83049583, 0.14336138, 0.4747437 , 0.01741077, 0.62288295, 0.79372406, 0.12022883, 0.68598241, 0.3064384 , 0.31021374, 0.76239295, 0.53823463]) If we want to generate something other than unif(0,1), we can call the function with a=X and b=Y where X and Y are the lower and upper bounds of the uniform distribution: > rv.uniform(a=7, b=11, n=25) > > array([ 7.01135121, 9.77983461, 7.68033457, 9.3831214 , 8.12143777, 7.00453619, 7.23973089, 8.15711553, 10.64078812, 9.72591803, 9.50438901, 10.26602297, 7.04803487, 10.32198331, 7.57344553, 8.89897481, 7.0696431 , 9.4915318 , 10.17489623, 7.48091533, 9.74392966, 8.22575361, 8.24085498, 10.04957178, 9.15293853]) ### Distributions **Normal Random Variates** To generate random normal random variates, call the norm() function. By default, the norm() function will generate values with mean = 0 and standard deviation = 1. > rv.norm(n=25) > > array([-1.33438863, 0.12180611, 0.88656523, 0.50965537, -1.64358406, -0.25778164, 0.57095618, 1.90310886, -0.05967737, -0.34183211, 1.40942348, 0.588753 , -2.00879407, -0.27557057, -0.05367554, 0.36562436, 1.51957859, -0.87597507, 0.27341912, 0.99870143, 0.0563413 , -0.58931763, 0.06256761, 1.34552544, -0.41456673]) To generate normals with other means and standard deviations, simply specify them when calling the function: > rv.norm(mu=42, sd=21, n=25) > > array([31.09197496, 90.91916642, 10.96438887, 63.22805106, 11.65331438, 42.3934924 , 31.50241102, 57.32494887, 39.63622134, 50.84789244, 29.66813461, 71.59768198, 51.23679519, 29.62926174, 38.93133399, 21.33704934, 44.01056639, 85.43369206, 10.93161744, 35.5352881 , 47.6567116 , 62.89812129, 35.67247842, 48.76775665, 37.78179072]) **Exponential Random Variates** By default, the exponential() function will generate a single, lambda=1 random variate. > rv.exponential() > > array([1.11685025]) To generate exponentials with different rates (lambda), call the exponential function with lam=X, where X is 1/X rate: > rv.exponential(lam=42, n=25) > > array([0.02659167, 0.05889761, 0.0237974 , 0.05500891, 0.00990581, 0.00665694, 0.01027128, 0.00311863, 0.00991187, 0.00155661, 0.02532011, 0.00358105, 0.06095103, 0.02608557, 0.03126096, 0.01844892, 0.04179501, 0.00204212, 0.01357267, 0.02956585, 0.05493093, 0.04847486, 0.03083947, 0.03648715, 0.02353137]) **Erlang Random Variates** Random Erlang variates can be generated by calling the erlang() function. By default, the erlang function will generate variates with lambda = 1 and shape (k) = 1: > rv.erlang() > > array([0.39646936]) To generate erlangs with different rate and shape parameters, set lam=X and k = Y, where X is the lambda rate and Y is the shape: > rv.erlang(lam=5, k=5, n=25) > > array([0.39646936, 0.08803646, 0.45897164, 0.10449879, 1.07778402, 1.41096694, 1.04868842, 2.09746919, 1.07729126, 2.76008462, 0.42352393, 1.96869049, 0.08046101, 0.40697774, 0.31337257, 0.61761435, 0.18975684, 2.49867301, 0.8335498 , 0.34090517, 0.10486022, 0.13990266, 0.31996746, 0.24335083, 0.46553741]) **Weibull Random Variates** To generate values from the Weibull distribution, call the weibull() method with lam and beta. By default, lam and beta are set to 1 weibull(self, lam=1, beta=1). > rv.weibull() > > array([0.00284184]) To generate weibull values with different lam (shape) and beta (scale), set lam and beta as such: > rv.weibull(lam=3, beta=5, n=25) > > array([0.10318073, 0.34497802, 0.23822211, 0.32680215, 0.26688172, 0.08587253, 0.19102132, 0.26887509, 0.39745421, 0.3424279 , 0.33224353, 0.37046057, 0.13781682, 0.37386295, 0.2295085 , 0.30523775, 0.14852653, 0.33166333, 0.36519926, 0.22099585, 0.34327599, 0.2726182 , 0.2734267 , 0.35840856, 0.31657801]) **Triangular Random Variates** By default, the randomvariates library will generate Triangular(0,1,2) values from a triangular distribution: > rv.triangular() > >array([0.07533662]) To generate values from a Triangular distribution with lower bound a, mode b and upper bound c, call the triangular() function with a, b, and c set: > rv.triangular(a=-5, b=0, c=5, n=25) > > array([-4.6233169 , 1.09461047, -2.08380691, 0.50433737, -1.25594176, -4.76187742, -3.26892052, -1.19685075, 2.88100295, 1.00925764, 0.67621261, 1.97102115, -4.22512206, 2.08877884, -2.32267501, -0.12791778, -4.06697336, 0.65766738, 1.7884899 , -2.54817586, 1.0375665 , -1.08567757, -1.06163902, 1.55321124, 0.19497467]) **Bernoulli Random Variates** To generate bernoulli(p) random values, call the bernoulli() method with probability, p. By default, the bernoulli() method generates bernoulli(0.5) random values. > rv.bernoulli() > > array([0]) > > rv.bernoulli(n=25) > >array([0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1]) To generate bernoulli(0.8) random values, set p=0.8: > rv.bernoulli(p=0.8, n=25) > > array([0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1]) **Binomial Random Variates** Binomial(n,p) random values can be generated with the binomial() function. By default, the binomial() function generates 1 trial at p=0.5: > rv.binomial() > > array([0]) Note: Don't confuse t=trials and n=number of values to generate. To generate 25 binomials with 10 trials, and probability 0.5, we would specify binomial(t=10, p=0.5, n=25): > rv.binomial(t=10, p=0.5, n=25) > > array([6, 5, 3, 3, 5, 3, 5, 7, 6, 5, 3, 5, 4, 5, 4, 4, 2, 6, 6, 6, 4, 4, 6, 5, 2]) **Random X-sided Dice Toss** For the D&D fans, the dicetoss() function allows you to generate an X-sided die toss. For example, to generate 10, 20-sided dice tosses, simply call the dicetoss() function. By default, dicetoss() defaults to a 6-sided die: > rv.dicetoss(n=10) > > array([6., 6., 5., 1., 6., 3., 1., 5., 3., 5.]) To generate 10, 20-sided dice toss, set the side variable to 20: >rv.dicetoss(sides=20, n=10) > > > array([20., 20., 17., 4., 20., 10., 3., 15., 10., 14.]) **Geometric Random Variates** To generate geometric random values, use the geometric() function. By default, the geometric function is set to a probability of 0.5: > rv.geometric() > > array([5.]) To generate geometric values with a different probability, set p equal to the new probability: > rv.geometric(p=0.42, n=25) > > array([ 7., 12., 4., 1., 6., 2., 1., 3., 2., 3., 1., 1., 2., 1., 2., 7., 3., 1., 4., 2., 1., 2., 2., 4., 1.]) **Negative Binomial Random Variates** To generate negative binomial random variates, call the negbin() funtion. By default. negbin() will generate values with a probability of 0.5 and 1 trial: > rv.negbin() > > array([1.]) To generate 25 negbin values with a probability of 0.42 and 10 trials: > rv.negbin(t=10, p=0.42, n=25) > > array([35., 21., 30., 26., 24., 24., 20., 28., 21., 22., 29., 18., 22., 26., 19., 19., 22., 22., 21., 25., 25., 26., 22., 27., 24.]) **Chi-Squared Random Variates** Chi-Squared random values can be generated by calling the chisq() method. By default, chisq() generates values with df=1: > rv.chisq() > > array([0.02609475]) To generated chi-squared values with different degrees of freedom, set df=X where X is the degrees of freedom: > rv.chisq(df=3, n=25) > > array([4.03013192, 2.1255032 , 1.41496674, 2.49301795, 4.34632967, 7.07483573, 8.80603908, 0.40890643, 1.02559277, 0.3263966 , 1.16851057, 9.41171507, 0.10331964, 0.4620984 , 1.30332824, 2.86123596, 6.30155659, 2.34574672, 6.51270442, 1.8040176 , 2.73061465, 2.18939106, 0.17322089, 1.95769521, 1.34417982]) **Poisson Random Variates** By default, the poisson() method will generate poission random values with lam=1: > rv.poisson() > > array([18]) To generate possion random variates for different lambda values, set lam=X, where X is the new labmda value: > rv.poisson(lam=3, n=25) > > array([4, 7, 3, 2, 3, 3, 0, 3, 5, 1, 3, 2, 9, 3, 1, 3, 2, 3, 4, 5, 2, 4, 5, 7, 2]) **Gamma Random Variates** Gamma random values can be generated by calling the gamma() function. By default, gamma() generates values with a shape parameter (k) and scale parameter (theta) equal to one: > rv.gamma() > > array([0.0496442]) To generate gamma values with different shape and scale parameters set k = shape and theta = scale. i.e.) k=3, theta=3 > rv.gamma(k=3, theta=3, n=25) > > array([ 2.86760705, 8.28296535, 15.61018946, 13.89795502, 28.71023072, 0.98039742, 14.78770565, 8.31682721, 7.12832689, 11.31451427, 14.12970636, 9.03501294, 18.95392932, 8.94168958, 2.80143093, 7.09702805, 1.98142127, 6.69417433, 7.64163982, 12.51436153, 9.84781027, 7.80807741, 6.79817083, 7.22277182, 13.64361073]) **Lognormal Random Variates** Lognormal values can be generated with the lognormal() function: > rv.lognormal() > > array([0.24196649]) To generate lognormal values with different mean and standards deviation, specify the mu=X and sd=Y parameters where mu=X is the mean and sd=Y is the standard deviation: > rv.lognormal(mu=5, sd=2, n=10) > > array([ 8.68926144, 1165.743983 , 542.36799958, 50.00329616, 2518.21870637, 6.20023729, 2.58041108, 83.05661697, 617.74324652, 122.09875036]) **Beta Random Variates** Beta random values can be generated via the beta() method. The beta() method takes two shape parameters - a and b. By default, the a and b parameters are set to 1: > rv.beta() > > array([0.01995716]) To generate beta values with different shape parameters, specify different shape values as such: > rv.beta(a = 2, b = 4, n = 25) > > array([0.05843224, 0.17390187, 0.50358743, 0.50885326, 0.71498465, 0.01966699, 0.53999924, 0.18878303, 0.30052695, 0.66454575, 0.47430718, 0.23385242, 0.69526851, 0.48014572, 0.07415403, 0.22019374, 0.07180719, 0.17131799, 0.19680721, 0.23783813, 0.32510779, 0.29333343, 0.20013351, 0.27709332, 0.51118395]) # Release History 2021-11-10: More stupid seed fixes 2021-11-10: Erlang fixes 2021-11-08: Beta fixes 2021-11-08: Gamma fixes 2021-11-08: Refactored poisson to correctly handle the situation when a seed is set 2021-11-08: Found a bug in the seed algorithm 2021-11-08: Refactored norm to properly hand seed==0 2021-11-08: Refactored chisq method to work around "funky" seeding issues 2021-11-08: Refactored the negbin method to properly handle the situation when a seed is set. 2021-11-08: Refactored the binomial method to properly handle the situation when a seed is set. 2021-11-06: Initial creation of pip package 2021-11-06: Added Tausworthe Generator and a uniform generator based off the Tausworthe generator. %prep %autosetup -n randvars-0.0.17 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-randvars -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.0.17-1 - Package Spec generated