%global _empty_manifest_terminate_build 0 Name: python-pycox Version: 0.2.3 Release: 1 Summary: Survival analysis with PyTorch License: BSD license URL: https://github.com/havakv/pycox Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b4/bd/6cd4cc35313b2d2c1d6b9c19486c6f706db64dbac8685b5c705d7e010d85/pycox-0.2.3.tar.gz BuildArch: noarch Requires: python3-torchtuples Requires: python3-feather-format Requires: python3-h5py Requires: python3-numba Requires: python3-scikit-learn Requires: python3-requests Requires: python3-py7zr %description **pycox** is a python package for survival analysis and time-to-event prediction with [PyTorch](https://pytorch.org/). It is built on the [torchtuples](https://github.com/havakv/torchtuples) package for training [PyTorch](https://pytorch.org/) models. Read the documentation at: https://github.com/havakv/pycox The package contains - survival models: (Logistic-Hazard, DeepHit, DeepSurv, Cox-Time, MTLR, etc.) - evaluation criteria (concordance, Brier score, Binomial log-likelihood, etc.) - event-time datasets (SUPPORT, METABRIC, KKBox, etc) - simulation studies - illustrative examples %package -n python3-pycox Summary: Survival analysis with PyTorch Provides: python-pycox BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pycox **pycox** is a python package for survival analysis and time-to-event prediction with [PyTorch](https://pytorch.org/). It is built on the [torchtuples](https://github.com/havakv/torchtuples) package for training [PyTorch](https://pytorch.org/) models. Read the documentation at: https://github.com/havakv/pycox The package contains - survival models: (Logistic-Hazard, DeepHit, DeepSurv, Cox-Time, MTLR, etc.) - evaluation criteria (concordance, Brier score, Binomial log-likelihood, etc.) - event-time datasets (SUPPORT, METABRIC, KKBox, etc) - simulation studies - illustrative examples %package help Summary: Development documents and examples for pycox Provides: python3-pycox-doc %description help **pycox** is a python package for survival analysis and time-to-event prediction with [PyTorch](https://pytorch.org/). It is built on the [torchtuples](https://github.com/havakv/torchtuples) package for training [PyTorch](https://pytorch.org/) models. Read the documentation at: https://github.com/havakv/pycox The package contains - survival models: (Logistic-Hazard, DeepHit, DeepSurv, Cox-Time, MTLR, etc.) - evaluation criteria (concordance, Brier score, Binomial log-likelihood, etc.) - event-time datasets (SUPPORT, METABRIC, KKBox, etc) - simulation studies - illustrative examples %prep %autosetup -n pycox-0.2.3 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pycox -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 0.2.3-1 - Package Spec generated