%global _empty_manifest_terminate_build 0
Name: python-metriculous
Version: 0.3.0
Release: 1
Summary: Very unstable library containing utilities to measure and visualize statistical properties of machine learning models.
License: MIT
URL: https://github.com/metriculous-ml/metriculous
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/64/5d/dae8ff38946fa2a97463b36e3b01fb908f650437c20d2f0c3ceaa6c52b94/metriculous-0.3.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scikit-learn
Requires: python3-assertpy
Requires: python3-pandas
Requires: python3-bokeh
Requires: python3-jupyter
%description
# __`metriculous`__
Measure, visualize, and compare machine learning model performance without the usual boilerplate.
Breaking API improvements to be expected.
# Installation
```console
$ pip install metriculous
```
Or, for the latest unreleased version:
```console
$ pip install git+https://github.com/metriculous-ml/metriculous.git
```
# Comparing Regression Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_regression.py)
Click to see more code
```python
import numpy as np
# Mock the ground truth, a one-dimensional array of floats
ground_truth = np.random.random(300)
# Mock the output of a few models
perfect_model = ground_truth
noisy_model = ground_truth + 0.1 * np.random.randn(*ground_truth.shape)
random_model = np.random.randn(*ground_truth.shape)
zero_model = np.zeros_like(ground_truth)
```
```python
import metriculous
metriculous.compare_regressors(
ground_truth=ground_truth,
model_predictions=[perfect_model, noisy_model, random_model, zero_model],
model_names=["Perfect Model", "Noisy Model", "Random Model", "Zero Model"],
).save_html("comparison.html").display()
```
This will save an HTML file with common regression metrics and charts, and if you are working in a [Jupyter notebook](https://github.com/jupyter/notebook) will display the output right in front of you:


# Comparing Classification Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_classification.py)
Click to see more code
```python
import numpy as np
def normalize(array2d: np.ndarray) -> np.ndarray:
return array2d / array2d.sum(axis=1, keepdims=True)
class_names = ["Cat", "Dog", "Pig"]
num_classes = len(class_names)
num_samples = 500
# Mock ground truth
ground_truth = np.random.choice(range(num_classes), size=num_samples, p=[0.5, 0.4, 0.1])
# Mock model predictions
perfect_model = np.eye(num_classes)[ground_truth]
noisy_model = normalize(
perfect_model + 2 * np.random.random((num_samples, num_classes))
)
random_model = normalize(np.random.random((num_samples, num_classes)))
```
```python
import metriculous
metriculous.compare_classifiers(
ground_truth=ground_truth,
model_predictions=[perfect_model, noisy_model, random_model],
model_names=["Perfect Model", "Noisy Model", "Random Model"],
class_names=class_names,
one_vs_all_figures=True,
).display()
```




# Development
### Poetry
This project uses [poetry](https://poetry.eustace.io/) to manage
dependencies. Please make sure it is installed for the required python version. Then install the dependencies with `poetry install`.
### Makefile
A Makefile is used to automate common development workflows. Type `make` or `make help` to see a list of available commands. Before commiting changes it is recommended to run `make format check test`.
%package -n python3-metriculous
Summary: Very unstable library containing utilities to measure and visualize statistical properties of machine learning models.
Provides: python-metriculous
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-metriculous
# __`metriculous`__
Measure, visualize, and compare machine learning model performance without the usual boilerplate.
Breaking API improvements to be expected.
# Installation
```console
$ pip install metriculous
```
Or, for the latest unreleased version:
```console
$ pip install git+https://github.com/metriculous-ml/metriculous.git
```
# Comparing Regression Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_regression.py)
Click to see more code
```python
import numpy as np
# Mock the ground truth, a one-dimensional array of floats
ground_truth = np.random.random(300)
# Mock the output of a few models
perfect_model = ground_truth
noisy_model = ground_truth + 0.1 * np.random.randn(*ground_truth.shape)
random_model = np.random.randn(*ground_truth.shape)
zero_model = np.zeros_like(ground_truth)
```
```python
import metriculous
metriculous.compare_regressors(
ground_truth=ground_truth,
model_predictions=[perfect_model, noisy_model, random_model, zero_model],
model_names=["Perfect Model", "Noisy Model", "Random Model", "Zero Model"],
).save_html("comparison.html").display()
```
This will save an HTML file with common regression metrics and charts, and if you are working in a [Jupyter notebook](https://github.com/jupyter/notebook) will display the output right in front of you:


# Comparing Classification Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_classification.py)
Click to see more code
```python
import numpy as np
def normalize(array2d: np.ndarray) -> np.ndarray:
return array2d / array2d.sum(axis=1, keepdims=True)
class_names = ["Cat", "Dog", "Pig"]
num_classes = len(class_names)
num_samples = 500
# Mock ground truth
ground_truth = np.random.choice(range(num_classes), size=num_samples, p=[0.5, 0.4, 0.1])
# Mock model predictions
perfect_model = np.eye(num_classes)[ground_truth]
noisy_model = normalize(
perfect_model + 2 * np.random.random((num_samples, num_classes))
)
random_model = normalize(np.random.random((num_samples, num_classes)))
```
```python
import metriculous
metriculous.compare_classifiers(
ground_truth=ground_truth,
model_predictions=[perfect_model, noisy_model, random_model],
model_names=["Perfect Model", "Noisy Model", "Random Model"],
class_names=class_names,
one_vs_all_figures=True,
).display()
```




# Development
### Poetry
This project uses [poetry](https://poetry.eustace.io/) to manage
dependencies. Please make sure it is installed for the required python version. Then install the dependencies with `poetry install`.
### Makefile
A Makefile is used to automate common development workflows. Type `make` or `make help` to see a list of available commands. Before commiting changes it is recommended to run `make format check test`.
%package help
Summary: Development documents and examples for metriculous
Provides: python3-metriculous-doc
%description help
# __`metriculous`__
Measure, visualize, and compare machine learning model performance without the usual boilerplate.
Breaking API improvements to be expected.
# Installation
```console
$ pip install metriculous
```
Or, for the latest unreleased version:
```console
$ pip install git+https://github.com/metriculous-ml/metriculous.git
```
# Comparing Regression Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_regression.py)
Click to see more code
```python
import numpy as np
# Mock the ground truth, a one-dimensional array of floats
ground_truth = np.random.random(300)
# Mock the output of a few models
perfect_model = ground_truth
noisy_model = ground_truth + 0.1 * np.random.randn(*ground_truth.shape)
random_model = np.random.randn(*ground_truth.shape)
zero_model = np.zeros_like(ground_truth)
```
```python
import metriculous
metriculous.compare_regressors(
ground_truth=ground_truth,
model_predictions=[perfect_model, noisy_model, random_model, zero_model],
model_names=["Perfect Model", "Noisy Model", "Random Model", "Zero Model"],
).save_html("comparison.html").display()
```
This will save an HTML file with common regression metrics and charts, and if you are working in a [Jupyter notebook](https://github.com/jupyter/notebook) will display the output right in front of you:


# Comparing Classification Models [](https://mybinder.org/v2/gh/metriculous-ml/metriculous/master?filepath=notebooks%2Fquickstart_classification.py)
Click to see more code
```python
import numpy as np
def normalize(array2d: np.ndarray) -> np.ndarray:
return array2d / array2d.sum(axis=1, keepdims=True)
class_names = ["Cat", "Dog", "Pig"]
num_classes = len(class_names)
num_samples = 500
# Mock ground truth
ground_truth = np.random.choice(range(num_classes), size=num_samples, p=[0.5, 0.4, 0.1])
# Mock model predictions
perfect_model = np.eye(num_classes)[ground_truth]
noisy_model = normalize(
perfect_model + 2 * np.random.random((num_samples, num_classes))
)
random_model = normalize(np.random.random((num_samples, num_classes)))
```
```python
import metriculous
metriculous.compare_classifiers(
ground_truth=ground_truth,
model_predictions=[perfect_model, noisy_model, random_model],
model_names=["Perfect Model", "Noisy Model", "Random Model"],
class_names=class_names,
one_vs_all_figures=True,
).display()
```




# Development
### Poetry
This project uses [poetry](https://poetry.eustace.io/) to manage
dependencies. Please make sure it is installed for the required python version. Then install the dependencies with `poetry install`.
### Makefile
A Makefile is used to automate common development workflows. Type `make` or `make help` to see a list of available commands. Before commiting changes it is recommended to run `make format check test`.
%prep
%autosetup -n metriculous-0.3.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-metriculous -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot - 0.3.0-1
- Package Spec generated